Cargando…
Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate
Progressive decline in pancreatic beta-cell function is central to the pathogenesis of type 2 diabetes (T2D). Here, we explore the relationship between the beta cell and its nutritional environment, asking how an excess of energy substrate leads to altered energy production and subsequent insulin se...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674605/ https://www.ncbi.nlm.nih.gov/pubmed/38004183 http://dx.doi.org/10.3390/nu15224791 |
_version_ | 1785149727800557568 |
---|---|
author | Perrier, Johan Nawrot, Margaux Madec, Anne-Marie Chikh, Karim Chauvin, Marie-Agnès Damblon, Christian Sabatier, Julia Thivolet, Charles H. Rieusset, Jennifer Rautureau, Gilles J. P. Panthu, Baptiste |
author_facet | Perrier, Johan Nawrot, Margaux Madec, Anne-Marie Chikh, Karim Chauvin, Marie-Agnès Damblon, Christian Sabatier, Julia Thivolet, Charles H. Rieusset, Jennifer Rautureau, Gilles J. P. Panthu, Baptiste |
author_sort | Perrier, Johan |
collection | PubMed |
description | Progressive decline in pancreatic beta-cell function is central to the pathogenesis of type 2 diabetes (T2D). Here, we explore the relationship between the beta cell and its nutritional environment, asking how an excess of energy substrate leads to altered energy production and subsequent insulin secretion. Alterations in intracellular metabolic homeostasis are key markers of islets with T2D, but changes in cellular metabolite exchanges with their environment remain unknown. We answered this question using nuclear magnetic resonance-based quantitative metabolomics and evaluated the consumption or secretion of 31 extracellular metabolites from healthy and T2D human islets. Islets were also cultured under high levels of glucose and/or palmitate to induce gluco-, lipo-, and glucolipotoxicity. Biochemical analyses revealed drastic alterations in the pyruvate and citrate pathways, which appear to be associated with mitochondrial oxoglutarate dehydrogenase (OGDH) downregulation. We repeated these manipulations on the rat insulinoma-derived beta-pancreatic cell line (INS-1E). Our results highlight an OGDH downregulation with a clear effect on the pyruvate and citrate pathways. However, citrate is directed to lipogenesis in the INS-1E cells instead of being secreted as in human islets. Our results demonstrate the ability of metabolomic approaches performed on culture media to easily discriminate T2D from healthy and functional islets. |
format | Online Article Text |
id | pubmed-10674605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106746052023-11-15 Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate Perrier, Johan Nawrot, Margaux Madec, Anne-Marie Chikh, Karim Chauvin, Marie-Agnès Damblon, Christian Sabatier, Julia Thivolet, Charles H. Rieusset, Jennifer Rautureau, Gilles J. P. Panthu, Baptiste Nutrients Article Progressive decline in pancreatic beta-cell function is central to the pathogenesis of type 2 diabetes (T2D). Here, we explore the relationship between the beta cell and its nutritional environment, asking how an excess of energy substrate leads to altered energy production and subsequent insulin secretion. Alterations in intracellular metabolic homeostasis are key markers of islets with T2D, but changes in cellular metabolite exchanges with their environment remain unknown. We answered this question using nuclear magnetic resonance-based quantitative metabolomics and evaluated the consumption or secretion of 31 extracellular metabolites from healthy and T2D human islets. Islets were also cultured under high levels of glucose and/or palmitate to induce gluco-, lipo-, and glucolipotoxicity. Biochemical analyses revealed drastic alterations in the pyruvate and citrate pathways, which appear to be associated with mitochondrial oxoglutarate dehydrogenase (OGDH) downregulation. We repeated these manipulations on the rat insulinoma-derived beta-pancreatic cell line (INS-1E). Our results highlight an OGDH downregulation with a clear effect on the pyruvate and citrate pathways. However, citrate is directed to lipogenesis in the INS-1E cells instead of being secreted as in human islets. Our results demonstrate the ability of metabolomic approaches performed on culture media to easily discriminate T2D from healthy and functional islets. MDPI 2023-11-15 /pmc/articles/PMC10674605/ /pubmed/38004183 http://dx.doi.org/10.3390/nu15224791 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Perrier, Johan Nawrot, Margaux Madec, Anne-Marie Chikh, Karim Chauvin, Marie-Agnès Damblon, Christian Sabatier, Julia Thivolet, Charles H. Rieusset, Jennifer Rautureau, Gilles J. P. Panthu, Baptiste Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate |
title | Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate |
title_full | Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate |
title_fullStr | Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate |
title_full_unstemmed | Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate |
title_short | Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate |
title_sort | human pancreatic islets react to glucolipotoxicity by secreting pyruvate and citrate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674605/ https://www.ncbi.nlm.nih.gov/pubmed/38004183 http://dx.doi.org/10.3390/nu15224791 |
work_keys_str_mv | AT perrierjohan humanpancreaticisletsreacttoglucolipotoxicitybysecretingpyruvateandcitrate AT nawrotmargaux humanpancreaticisletsreacttoglucolipotoxicitybysecretingpyruvateandcitrate AT madecannemarie humanpancreaticisletsreacttoglucolipotoxicitybysecretingpyruvateandcitrate AT chikhkarim humanpancreaticisletsreacttoglucolipotoxicitybysecretingpyruvateandcitrate AT chauvinmarieagnes humanpancreaticisletsreacttoglucolipotoxicitybysecretingpyruvateandcitrate AT damblonchristian humanpancreaticisletsreacttoglucolipotoxicitybysecretingpyruvateandcitrate AT sabatierjulia humanpancreaticisletsreacttoglucolipotoxicitybysecretingpyruvateandcitrate AT thivoletcharlesh humanpancreaticisletsreacttoglucolipotoxicitybysecretingpyruvateandcitrate AT rieussetjennifer humanpancreaticisletsreacttoglucolipotoxicitybysecretingpyruvateandcitrate AT rautureaugillesjp humanpancreaticisletsreacttoglucolipotoxicitybysecretingpyruvateandcitrate AT panthubaptiste humanpancreaticisletsreacttoglucolipotoxicitybysecretingpyruvateandcitrate |