Cargando…
3D Object Detection Using Multiple-Frame Proposal Features Fusion
Object detection is important in many applications, such as autonomous driving. While 2D images lack depth information and are sensitive to environmental conditions, 3D point clouds can provide accurate depth information and a more descriptive environment. However, sparsity is always a challenge in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674697/ https://www.ncbi.nlm.nih.gov/pubmed/38005549 http://dx.doi.org/10.3390/s23229162 |
_version_ | 1785149740337332224 |
---|---|
author | Huang, Minyuan Leung, Henry Hou, Ming |
author_facet | Huang, Minyuan Leung, Henry Hou, Ming |
author_sort | Huang, Minyuan |
collection | PubMed |
description | Object detection is important in many applications, such as autonomous driving. While 2D images lack depth information and are sensitive to environmental conditions, 3D point clouds can provide accurate depth information and a more descriptive environment. However, sparsity is always a challenge in single-frame point cloud object detection. This paper introduces a two-stage proposal-based feature fusion method for object detection using multiple frames. The proposed method, called proposal features fusion (PFF), utilizes a cosine-similarity approach to associate proposals from multiple frames and employs an attention weighted fusion (AWF) module to merge features from these proposals. It allows for feature fusion specific to individual objects and offers lower computational complexity while achieving higher precision. The experimental results on the nuScenes dataset demonstrate the effectiveness of our approach, achieving an mAP of 46.7%, which is 1.3% higher than the state-of-the-art 3D object detection method. |
format | Online Article Text |
id | pubmed-10674697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106746972023-11-14 3D Object Detection Using Multiple-Frame Proposal Features Fusion Huang, Minyuan Leung, Henry Hou, Ming Sensors (Basel) Article Object detection is important in many applications, such as autonomous driving. While 2D images lack depth information and are sensitive to environmental conditions, 3D point clouds can provide accurate depth information and a more descriptive environment. However, sparsity is always a challenge in single-frame point cloud object detection. This paper introduces a two-stage proposal-based feature fusion method for object detection using multiple frames. The proposed method, called proposal features fusion (PFF), utilizes a cosine-similarity approach to associate proposals from multiple frames and employs an attention weighted fusion (AWF) module to merge features from these proposals. It allows for feature fusion specific to individual objects and offers lower computational complexity while achieving higher precision. The experimental results on the nuScenes dataset demonstrate the effectiveness of our approach, achieving an mAP of 46.7%, which is 1.3% higher than the state-of-the-art 3D object detection method. MDPI 2023-11-14 /pmc/articles/PMC10674697/ /pubmed/38005549 http://dx.doi.org/10.3390/s23229162 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huang, Minyuan Leung, Henry Hou, Ming 3D Object Detection Using Multiple-Frame Proposal Features Fusion |
title | 3D Object Detection Using Multiple-Frame Proposal Features Fusion |
title_full | 3D Object Detection Using Multiple-Frame Proposal Features Fusion |
title_fullStr | 3D Object Detection Using Multiple-Frame Proposal Features Fusion |
title_full_unstemmed | 3D Object Detection Using Multiple-Frame Proposal Features Fusion |
title_short | 3D Object Detection Using Multiple-Frame Proposal Features Fusion |
title_sort | 3d object detection using multiple-frame proposal features fusion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674697/ https://www.ncbi.nlm.nih.gov/pubmed/38005549 http://dx.doi.org/10.3390/s23229162 |
work_keys_str_mv | AT huangminyuan 3dobjectdetectionusingmultipleframeproposalfeaturesfusion AT leunghenry 3dobjectdetectionusingmultipleframeproposalfeaturesfusion AT houming 3dobjectdetectionusingmultipleframeproposalfeaturesfusion |