Cargando…

Prevalence and Molecular Characterization of Shiga Toxin-Producing Escherichia coli from Food and Clinical Samples

Shiga toxin-producing Escherichia coli (STEC) is one of the most prominent food-borne pathogens in humans. The current study aims to detect and to analyze the virulence factors, antibiotic resistance, and plasmid profiles for forty-six STEC strains, isolated from clinical and food strains. Pulsed-fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Alotaibi, Khulud, Khan, Ashraf A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675443/
https://www.ncbi.nlm.nih.gov/pubmed/38003767
http://dx.doi.org/10.3390/pathogens12111302
Descripción
Sumario:Shiga toxin-producing Escherichia coli (STEC) is one of the most prominent food-borne pathogens in humans. The current study aims to detect and to analyze the virulence factors, antibiotic resistance, and plasmid profiles for forty-six STEC strains, isolated from clinical and food strains. Pulsed-field gel electrophoresis (PFGE) was used to determine the genetic relatedness between different serotypes and sources of samples. The clinical samples were found to be resistant to Nb (100%), Tet (100%), Amp (20%), SXT (15%), and Kan (15%) antibiotics. In contrast, the food strains were found to be resistant to Nb (100%), Tet (33%), Amp (16.6%), and SXT (16.6%) antibiotics. The PFGE typing of the forty-six isolates was grouped into more than ten clusters, each with a similarity between 30% and 70%. Most of the isolates were found positive for more than five virulence genes (eae, hlyA, stx1, stx2, stx2f, stx2c, stx2e, stx2, nelB, pagC, sen, toxB, irp, efa, and efa1). All the isolates carried different sizes of the plasmids. The isolates were analyzed for plasmid replicon type by PCR, and 72.5% of the clinical isolates were found to contain X replicon-type plasmid, 50% of the clinical isolates contained FIB replicon-type plasmid, and 17.5% of the clinical isolates contained Y replicon-type plasmid. Three clinical isolates contained both I1 and Hi1 replicon-type plasmid. Only two food isolates contained B/O and W replicon-type plasmid. These results indicate that STEC strains have diverse clonal populations among food and clinical strains that are resistant to several antimicrobials. In conclusion, our findings indicate that food isolates of STEC strains harbor virulence, antimicrobial resistance, plasmid replicon typing determinants like those of other STEC strains from clinical strains. These results suggest that these strains are unique and may contribute to the virulence of the isolates. Therefore, surveillance and characterization of STEC strains can provide useful information about the prevalence of STEC in food and clinical sources. Furthermore, it will help to identify STEC serotypes that are highly pathogenic to humans and may emerge as a threat to public health.