Cargando…

Pioglitazone attenuates tamoxifen-induced liver damage in rats via modulating Keap1/Nrf2/HO-1 and SIRT1/Notch1 signaling pathways: In-vivo investigations, and molecular docking analysis

BACKGROUND: Tamoxifen (TAM) is a chemotherapeutic drug widely utilized to treat breast cancer. On the other hand, it exerts deleterious cellular effects in clinical applications as an antineoplastic agent, such as liver damage and cirrhosis. TAM-induced hepatic toxicity is mainly attributed to oxida...

Descripción completa

Detalles Bibliográficos
Autores principales: Kamel, Gellan Alaa Mohamed, Elariny, Hemat A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676319/
https://www.ncbi.nlm.nih.gov/pubmed/37934372
http://dx.doi.org/10.1007/s11033-023-08847-x
_version_ 1785141255366246400
author Kamel, Gellan Alaa Mohamed
Elariny, Hemat A.
author_facet Kamel, Gellan Alaa Mohamed
Elariny, Hemat A.
author_sort Kamel, Gellan Alaa Mohamed
collection PubMed
description BACKGROUND: Tamoxifen (TAM) is a chemotherapeutic drug widely utilized to treat breast cancer. On the other hand, it exerts deleterious cellular effects in clinical applications as an antineoplastic agent, such as liver damage and cirrhosis. TAM-induced hepatic toxicity is mainly attributed to oxidative stress and inflammation. Pioglitazone (PIO), a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist, is utilized to treat diabetes mellitus type-2. PIO has been reported to exert anti-inflammatory and antioxidant effects in different tissues. This research assessed the impact of PIO against TAM-induced hepatic intoxication. METHODS: Rats received PIO (10 mg/kg) and TAM (45 mg/kg) orally for 10 days. RESULTS: TAM increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT), triggered several histopathological alterations, NF-κB p65, increased hepatic oxidative stress, and pro-inflammatory cytokines. PIO protects against TAM-induced liver dysfunction, reduced malondialdehyde (MDA), and pro-inflammatory markers along with improved hepatic antioxidants. Moreover, PIO, increased hepatic Bcl-2 expression while reducing Bax expression and caspase-3 levels. In addition, PIO decreased Keap-1, Notch1, and Hes-1 while upregulated HO-1, Nrf2, and SIRT1. Molecular docking showed the binding affinity of PIO for Keap-1, NF-κB, and SIRT1. CONCLUSION: PIO mitigated TAM hepatotoxicity by decreasing apoptosis, inflammation, and oxidative stress. The protecting ability of PIO was accompanied by reducing Keap-1 and NF-κB and regulating Keap1/Nrf2/HO-1 and Sirt1/Notch1 signaling. GRAPHICAL ABSTRACT: A schematic diagram illustrating the protective effect of PIO against TAM hepatotoxicity. PIO prevented TAM-induced liver injury by regulating Nrf2/HO-1 and SIRT1/Notch1 signaling and mitigating oxidative stress, inflammation, and apoptosis. [Image: see text]
format Online
Article
Text
id pubmed-10676319
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Netherlands
record_format MEDLINE/PubMed
spelling pubmed-106763192023-11-07 Pioglitazone attenuates tamoxifen-induced liver damage in rats via modulating Keap1/Nrf2/HO-1 and SIRT1/Notch1 signaling pathways: In-vivo investigations, and molecular docking analysis Kamel, Gellan Alaa Mohamed Elariny, Hemat A. Mol Biol Rep Original Article BACKGROUND: Tamoxifen (TAM) is a chemotherapeutic drug widely utilized to treat breast cancer. On the other hand, it exerts deleterious cellular effects in clinical applications as an antineoplastic agent, such as liver damage and cirrhosis. TAM-induced hepatic toxicity is mainly attributed to oxidative stress and inflammation. Pioglitazone (PIO), a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist, is utilized to treat diabetes mellitus type-2. PIO has been reported to exert anti-inflammatory and antioxidant effects in different tissues. This research assessed the impact of PIO against TAM-induced hepatic intoxication. METHODS: Rats received PIO (10 mg/kg) and TAM (45 mg/kg) orally for 10 days. RESULTS: TAM increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT), triggered several histopathological alterations, NF-κB p65, increased hepatic oxidative stress, and pro-inflammatory cytokines. PIO protects against TAM-induced liver dysfunction, reduced malondialdehyde (MDA), and pro-inflammatory markers along with improved hepatic antioxidants. Moreover, PIO, increased hepatic Bcl-2 expression while reducing Bax expression and caspase-3 levels. In addition, PIO decreased Keap-1, Notch1, and Hes-1 while upregulated HO-1, Nrf2, and SIRT1. Molecular docking showed the binding affinity of PIO for Keap-1, NF-κB, and SIRT1. CONCLUSION: PIO mitigated TAM hepatotoxicity by decreasing apoptosis, inflammation, and oxidative stress. The protecting ability of PIO was accompanied by reducing Keap-1 and NF-κB and regulating Keap1/Nrf2/HO-1 and Sirt1/Notch1 signaling. GRAPHICAL ABSTRACT: A schematic diagram illustrating the protective effect of PIO against TAM hepatotoxicity. PIO prevented TAM-induced liver injury by regulating Nrf2/HO-1 and SIRT1/Notch1 signaling and mitigating oxidative stress, inflammation, and apoptosis. [Image: see text] Springer Netherlands 2023-11-07 2023 /pmc/articles/PMC10676319/ /pubmed/37934372 http://dx.doi.org/10.1007/s11033-023-08847-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Article
Kamel, Gellan Alaa Mohamed
Elariny, Hemat A.
Pioglitazone attenuates tamoxifen-induced liver damage in rats via modulating Keap1/Nrf2/HO-1 and SIRT1/Notch1 signaling pathways: In-vivo investigations, and molecular docking analysis
title Pioglitazone attenuates tamoxifen-induced liver damage in rats via modulating Keap1/Nrf2/HO-1 and SIRT1/Notch1 signaling pathways: In-vivo investigations, and molecular docking analysis
title_full Pioglitazone attenuates tamoxifen-induced liver damage in rats via modulating Keap1/Nrf2/HO-1 and SIRT1/Notch1 signaling pathways: In-vivo investigations, and molecular docking analysis
title_fullStr Pioglitazone attenuates tamoxifen-induced liver damage in rats via modulating Keap1/Nrf2/HO-1 and SIRT1/Notch1 signaling pathways: In-vivo investigations, and molecular docking analysis
title_full_unstemmed Pioglitazone attenuates tamoxifen-induced liver damage in rats via modulating Keap1/Nrf2/HO-1 and SIRT1/Notch1 signaling pathways: In-vivo investigations, and molecular docking analysis
title_short Pioglitazone attenuates tamoxifen-induced liver damage in rats via modulating Keap1/Nrf2/HO-1 and SIRT1/Notch1 signaling pathways: In-vivo investigations, and molecular docking analysis
title_sort pioglitazone attenuates tamoxifen-induced liver damage in rats via modulating keap1/nrf2/ho-1 and sirt1/notch1 signaling pathways: in-vivo investigations, and molecular docking analysis
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676319/
https://www.ncbi.nlm.nih.gov/pubmed/37934372
http://dx.doi.org/10.1007/s11033-023-08847-x
work_keys_str_mv AT kamelgellanalaamohamed pioglitazoneattenuatestamoxifeninducedliverdamageinratsviamodulatingkeap1nrf2ho1andsirt1notch1signalingpathwaysinvivoinvestigationsandmoleculardockinganalysis
AT elarinyhemata pioglitazoneattenuatestamoxifeninducedliverdamageinratsviamodulatingkeap1nrf2ho1andsirt1notch1signalingpathwaysinvivoinvestigationsandmoleculardockinganalysis