Cargando…

Computational Modeling of Stapled Coiled-Coil Inhibitors Against Bcr-Abl: Toward a Treatment Strategy for CML

The chimeric oncoprotein Bcr-Abl is the causative agent of virtually all chronic myeloid leukemias (CML) and a subset of acute lymphoblastic leukemias (ALL). As a result of the so-called Philadelphia Chromosome translocation t(9;22), Bcr-Abl manifests as a constitutively active tyrosine kinase which...

Descripción completa

Detalles Bibliográficos
Autores principales: Lima, Maria Carolina P., Hornsby, Braxten D., Lim, Carol S., Cheatham, Thomas E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680756/
https://www.ncbi.nlm.nih.gov/pubmed/38014060
http://dx.doi.org/10.1101/2023.11.15.566894
Descripción
Sumario:The chimeric oncoprotein Bcr-Abl is the causative agent of virtually all chronic myeloid leukemias (CML) and a subset of acute lymphoblastic leukemias (ALL). As a result of the so-called Philadelphia Chromosome translocation t(9;22), Bcr-Abl manifests as a constitutively active tyrosine kinase which promotes leukemogenesis by activation of cell cycle signaling pathways. Constitutive and oncogenic activation is mediated by an N-terminal coiled-coil oligomerization domain in Bcr (Bcr-CC), presenting a therapeutic target for inhibition of Bcr-Abl activity toward the treatment of Bcr-Abl+ leukemias. Previously, we demonstrated that a rationally designed Bcr-CC mutant, CCmut3, exerts a dominant negative effect upon Bcr-Abl activity by preferential oligomerization with Bcr-CC. Moreover, we have shown conjugation to a leukemia-specific cell-penetrating peptide (CPP-CCmut3) improves intracellular delivery and activity. However, our full-length CPP-CCmut3 construct (81 aa) is encumbered by an intrinsically high degree of conformational variability and susceptibility to proteolytic degradation, relative to traditional small molecule therapeutics. Here, we iterate a new generation of our inhibitor against Bcr-CC mediated Bcr-Abl assembly that is designed to address these constraints through incorporation of all-hydrocarbon staples spanning i, i + 7 positions in helix α2 (CPP-CCmut3-st). We utilize computational modeling and biomolecular simulation to design and characterize single and double staple candidates in silico, evaluating binding energetics and building upon our seminal work modeling single hydrocarbon staples when applied to a truncated Bcr-CC sequence. This strategy enables us to efficiently build, characterize, and screen lead single/double stapled CPP-CCmut3-st candidates for experimental studies and validation in vitro and in vivo. In addition to full-length CPP-CCmut, we model a truncated system characterized by deletion of helix α1 and the flexible-loop linker, which are known to impart high conformational variability. To study the impact of the N-terminal cyclic CPP toward model stability and inhibitor activity, we also model the full-length and truncated systems without CPP, with cyclized CPP, and with linear CPP, for a total of six systems which comprise our library. From this library, we present lead stapled peptide candidates to be synthesized and evaluated experimentally as our next-generation inhibitors against Bcr-Abl.