Cargando…
Inhibition of the mTORC1 pathway alleviates adipose tissue fibrosis
BACKGROUND: Adipose fibrosis is a major factor of adipose dysfunction, which causes metabolic dysfunction during obesity, but its molecular mechanisms are poorly understood. This study investigated the role and potential mechanisms of mTORC1 in obesity-induced adipose fibrosis. METHODS: ob/ob mice w...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681937/ https://www.ncbi.nlm.nih.gov/pubmed/38034664 http://dx.doi.org/10.1016/j.heliyon.2023.e21526 |
_version_ | 1785150869001469952 |
---|---|
author | Gong, Sa Li, Chang Leng, Qingyang Liu, Chongxiao Zhu, Yi Zhang, Hongli Li, Xiaohua |
author_facet | Gong, Sa Li, Chang Leng, Qingyang Liu, Chongxiao Zhu, Yi Zhang, Hongli Li, Xiaohua |
author_sort | Gong, Sa |
collection | PubMed |
description | BACKGROUND: Adipose fibrosis is a major factor of adipose dysfunction, which causes metabolic dysfunction during obesity, but its molecular mechanisms are poorly understood. This study investigated the role and potential mechanisms of mTORC1 in obesity-induced adipose fibrosis. METHODS: ob/ob mice were injected with rapamycin or the same volume of normal saline. The level of fibrosis in epididymal adipose tissue (EAT) was detected by observing aberrant deposition of extracellular matrix. Expression of fibrotic related genes was analysed using RNA-seq. 3T3-L1 preadipocytes were treated with cobalt chloride (CoCl(2)) and TGF-β1 to induce preadipocyte fibrosis. The fibrosis-related gene expression and protein levels were determined by RT-PCR, WB, and immunofluorescence in two types of fibrotic preadipocytes with or without rapamycin. RESULTS: Compared with vehicle treatment, EAT fibrosis-related aberrant deposition of extracellular matrix proteins and fibrotic gene expression were reduced in ob/ob mice treated with rapamycin. Both CoCl(2)-induced hypoxia and TGF-β1 successfully promoted adipocyte fibrosis, and the upregulated fibrosis-related genes expression was inhibited after the mTORC1 pathway was inhibited by rapamycin. CONCLUSION: Inhibition of the mTORC1 pathway ameliorates adipose fibrosis by suppressing fibrosis-related genes in hypoxia- and TGF-β-induced fibrotic preadipocytes. |
format | Online Article Text |
id | pubmed-10681937 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106819372023-11-30 Inhibition of the mTORC1 pathway alleviates adipose tissue fibrosis Gong, Sa Li, Chang Leng, Qingyang Liu, Chongxiao Zhu, Yi Zhang, Hongli Li, Xiaohua Heliyon Research Article BACKGROUND: Adipose fibrosis is a major factor of adipose dysfunction, which causes metabolic dysfunction during obesity, but its molecular mechanisms are poorly understood. This study investigated the role and potential mechanisms of mTORC1 in obesity-induced adipose fibrosis. METHODS: ob/ob mice were injected with rapamycin or the same volume of normal saline. The level of fibrosis in epididymal adipose tissue (EAT) was detected by observing aberrant deposition of extracellular matrix. Expression of fibrotic related genes was analysed using RNA-seq. 3T3-L1 preadipocytes were treated with cobalt chloride (CoCl(2)) and TGF-β1 to induce preadipocyte fibrosis. The fibrosis-related gene expression and protein levels were determined by RT-PCR, WB, and immunofluorescence in two types of fibrotic preadipocytes with or without rapamycin. RESULTS: Compared with vehicle treatment, EAT fibrosis-related aberrant deposition of extracellular matrix proteins and fibrotic gene expression were reduced in ob/ob mice treated with rapamycin. Both CoCl(2)-induced hypoxia and TGF-β1 successfully promoted adipocyte fibrosis, and the upregulated fibrosis-related genes expression was inhibited after the mTORC1 pathway was inhibited by rapamycin. CONCLUSION: Inhibition of the mTORC1 pathway ameliorates adipose fibrosis by suppressing fibrosis-related genes in hypoxia- and TGF-β-induced fibrotic preadipocytes. Elsevier 2023-11-04 /pmc/articles/PMC10681937/ /pubmed/38034664 http://dx.doi.org/10.1016/j.heliyon.2023.e21526 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Gong, Sa Li, Chang Leng, Qingyang Liu, Chongxiao Zhu, Yi Zhang, Hongli Li, Xiaohua Inhibition of the mTORC1 pathway alleviates adipose tissue fibrosis |
title | Inhibition of the mTORC1 pathway alleviates adipose tissue fibrosis |
title_full | Inhibition of the mTORC1 pathway alleviates adipose tissue fibrosis |
title_fullStr | Inhibition of the mTORC1 pathway alleviates adipose tissue fibrosis |
title_full_unstemmed | Inhibition of the mTORC1 pathway alleviates adipose tissue fibrosis |
title_short | Inhibition of the mTORC1 pathway alleviates adipose tissue fibrosis |
title_sort | inhibition of the mtorc1 pathway alleviates adipose tissue fibrosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681937/ https://www.ncbi.nlm.nih.gov/pubmed/38034664 http://dx.doi.org/10.1016/j.heliyon.2023.e21526 |
work_keys_str_mv | AT gongsa inhibitionofthemtorc1pathwayalleviatesadiposetissuefibrosis AT lichang inhibitionofthemtorc1pathwayalleviatesadiposetissuefibrosis AT lengqingyang inhibitionofthemtorc1pathwayalleviatesadiposetissuefibrosis AT liuchongxiao inhibitionofthemtorc1pathwayalleviatesadiposetissuefibrosis AT zhuyi inhibitionofthemtorc1pathwayalleviatesadiposetissuefibrosis AT zhanghongli inhibitionofthemtorc1pathwayalleviatesadiposetissuefibrosis AT lixiaohua inhibitionofthemtorc1pathwayalleviatesadiposetissuefibrosis |