Cargando…
Deep learning untangles the resistance mechanism of p53 reactivator in lung cancer cells
Tumor suppressor p53 plays a pivotal role in suppressing cancer, so various drugs has been suggested to upregulate its function. However, drug resistance is still the biggest hurdle to be overcome. To address this, we developed a deep learning model called AnoDAN (anomalous gene detection using gene...
Autores principales: | Lee, Soo Min, Han, Younghyun, Cho, Kwang-Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682260/ https://www.ncbi.nlm.nih.gov/pubmed/38034356 http://dx.doi.org/10.1016/j.isci.2023.108377 |
Ejemplares similares
-
Untangling the complexity of multimorbidity with machine learning
por: Hassaine, Abdelaali, et al.
Publicado: (2020) -
Broad‐Spectrum Antidote Discovery by Untangling the Reactivation Mechanism of Nerve‐Agent‐Inhibited Acetylcholinesterase
por: Lindgren, Cecilia, et al.
Publicado: (2022) -
Untangling the evolutionary roots of lung cancer
por: Devarakonda, Siddhartha, et al.
Publicado: (2019) -
Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques
por: Farooq, Muhammad Shoaib, et al.
Publicado: (2022) -
Shuffle & untangle: novel untangle methods for solving the tanglegram layout problem
por: Nguyen, Nghia, et al.
Publicado: (2022)