Cargando…
Benefit of using interaction effects for the analysis of high-dimensional time-response or dose-response data for two-group comparisons
High throughput RNA sequencing experiments are widely conducted and analyzed to identify differentially expressed genes (DEGs). The statistical models calculated for this task are often not clear to practitioners, and analyses may not be optimally tailored to the research hypothesis. Often, interact...
Autores principales: | Duda, Julia C., Drenda, Carolin, Kästel, Hue, Rahnenführer, Jörg, Kappenberg, Franziska |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682470/ https://www.ncbi.nlm.nih.gov/pubmed/38012163 http://dx.doi.org/10.1038/s41598-023-47057-0 |
Ejemplares similares
-
Information sharing in high-dimensional gene expression data for improved parameter estimation in concentration-response modelling
por: Kappenberg, Franziska, et al.
Publicado: (2023) -
Guidance for statistical design and analysis of toxicological dose–response experiments, based on a comprehensive literature review
por: Kappenberg, Franziska, et al.
Publicado: (2023) -
Comparison of observation-based and model-based identification of alert concentrations from concentration–expression data
por: Kappenberg, Franziska, et al.
Publicado: (2021) -
Handling deviating control values in concentration-response curves
por: Kappenberg, Franziska, et al.
Publicado: (2020) -
Designs for the simultaneous inference of concentration–response curves
por: Schürmeyer, Leonie, et al.
Publicado: (2023)