Cargando…
Knowledge-driven learning, optimization, and experimental design under uncertainty for materials discovery
Significant acceleration of the future discovery of novel functional materials requires a fundamental shift from the current materials discovery practice, which is heavily dependent on trial-and-error campaigns and high-throughput screening, to one that builds on knowledge-driven advanced informatic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682757/ https://www.ncbi.nlm.nih.gov/pubmed/38035192 http://dx.doi.org/10.1016/j.patter.2023.100863 |