Cargando…
Knowledge-driven learning, optimization, and experimental design under uncertainty for materials discovery
Significant acceleration of the future discovery of novel functional materials requires a fundamental shift from the current materials discovery practice, which is heavily dependent on trial-and-error campaigns and high-throughput screening, to one that builds on knowledge-driven advanced informatic...
Autores principales: | Qian, Xiaoning, Yoon, Byung-Jun, Arróyave, Raymundo, Qian, Xiaofeng, Dougherty, Edward R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682757/ https://www.ncbi.nlm.nih.gov/pubmed/38035192 http://dx.doi.org/10.1016/j.patter.2023.100863 |
Ejemplares similares
-
Scalable optimal Bayesian classification of single-cell trajectories under regulatory model uncertainty
por: Hajiramezanali, Ehsan, et al.
Publicado: (2019) -
Optimal signal processing under uncertainty
por: Dougherty, Edward R
Publicado: (2018) -
Optimal clustering under uncertainty
por: Dalton, Lori A., et al.
Publicado: (2018) -
Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors
por: Boluki, Shahin, et al.
Publicado: (2017) -
Efficient experimental design for uncertainty reduction in gene regulatory networks
por: Dehghannasiri, Roozbeh, et al.
Publicado: (2015)