Cargando…
Characterization on the oncogenic effect of the missense mutations of p53 via machine learning
Dysfunctions caused by missense mutations in the tumour suppressor p53 have been extensively shown to be a leading driver of many cancers. Unfortunately, it is time-consuming and labour-intensive to experimentally elucidate the effects of all possible missense variants. Recent works presented a comp...
Autores principales: | Pan, Qisheng, Portelli, Stephanie, Nguyen, Thanh Binh, Ascher, David B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685404/ https://www.ncbi.nlm.nih.gov/pubmed/38018912 http://dx.doi.org/10.1093/bib/bbad428 |
Ejemplares similares
-
TP53_PROF: a machine learning model to predict impact of missense mutations in TP53
por: Ben-Cohen, Gil, et al.
Publicado: (2022) -
AD-Syn-Net: systematic identification of Alzheimer’s disease-associated mutation and co-mutation vulnerabilities via deep learning
por: Pan, Xingxin, et al.
Publicado: (2023) -
Discovering trends and hotspots of biosafety and biosecurity research via machine learning
por: Guan, Renchu, et al.
Publicado: (2022) -
KLFDAPC: a supervised machine learning approach for spatial genetic structure analysis
por: Qin, Xinghu, et al.
Publicado: (2022) -
Machine learning for RNA 2D structure prediction benchmarked on experimental data
por: Justyna, Marek, et al.
Publicado: (2023)