Cargando…
Liver metabolomics reveals potential mechanism of Jieduan-Niwan formula against acute-on-chronic liver failure (ACLF) by improving mitochondrial damage and TCA cycle
BACKGROUND: Acute-on-chronic liver failure (ACLF) is a refractory disease with high mortality, which is characterized by a pathophysiological process of inflammation-related dysfunction of energy metabolism. Jieduan-Niwan formula (JDNWF) is a eutherapeutic Chinese medicine formula for ACLF. However,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691013/ https://www.ncbi.nlm.nih.gov/pubmed/38037150 http://dx.doi.org/10.1186/s13020-023-00858-x |
Sumario: | BACKGROUND: Acute-on-chronic liver failure (ACLF) is a refractory disease with high mortality, which is characterized by a pathophysiological process of inflammation-related dysfunction of energy metabolism. Jieduan-Niwan formula (JDNWF) is a eutherapeutic Chinese medicine formula for ACLF. However, the intrinsic mechanism of its anti-ACLF effect still need to be studied systematically. PURPOSE: This study aimed to investigate the mechanism of JDNWF against ACLF based on altered substance metabolic profile in ACLF the expression levels of related molecules. MATERIALS AND METHODS: The chemical characteristics of JDNWF were characterized using ultra performance liquid chromatography (UPLC) coupled with triple quadrupole mass spectrometry. Wistar rats subjected to a long-term CCL(4) stimulation followed by a combination of an acute attack with LPS/D-GalN were used to establish the ACLF model. Liver metabolites were analyzed by LC–MS/MS and multivariate analysis. Liver function, coagulation function, histopathology, mitochondrial metabolic enzyme activity and mitochondrial damage markers were evaluated. The protein expression of mitochondrial quality control (MQC) was investigated by western blot. RESULTS: Liver function, coagulation function, inflammation, oxidative stress and mitochondrial enzyme activity were significantly improved by JDNWF. 108 metabolites are considered as biomarkers of JDNWF in treating ACLF, which were closely related to TCA cycle. It was further suggested that JDNWF alleviated mitochondrial damage and MQC may be potential mechanism of JDNWF improving mitochondrial function. CONCLUSIONS: Metabolomics revealed that TCA cycle was impaired in ACLF rats, and JDNWF had a regulatory effect on it. The potential mechanism may be improving the mitochondrial function through MQC pathway, thus restoring energy metabolism. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13020-023-00858-x. |
---|