Cargando…

CAR-modified Cellular Therapies in Chronic Lymphocytic Leukemia: Is the Uphill Road Getting Less Steep?

The clinical development of chimeric antigen receptor (CAR) T-cell therapy has been more challenging for chronic lymphocytic leukemia (CLL) compared to other settings. One of the main reasons is the CLL-associated state of immune dysfunction that specifically involves patient-derived T cells. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Vitale, Candida, Griggio, Valentina, Perutelli, Francesca, Coscia, Marta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691795/
https://www.ncbi.nlm.nih.gov/pubmed/38044959
http://dx.doi.org/10.1097/HS9.0000000000000988
Descripción
Sumario:The clinical development of chimeric antigen receptor (CAR) T-cell therapy has been more challenging for chronic lymphocytic leukemia (CLL) compared to other settings. One of the main reasons is the CLL-associated state of immune dysfunction that specifically involves patient-derived T cells. Here, we provide an overview of the clinical results obtained with CAR T-cell therapy in CLL, describing the identified immunologic reasons for the inferior efficacy. Novel CAR T-cell formulations, such as lisocabtagene maraleucel, administered alone or in combination with the Bruton tyrosine kinase inhibitor ibrutinib, are currently under investigation. These approaches are based on the rationale that improving the quality of the T-cell source and of the CAR T-cell product may deliver a more functional therapeutic weapon. Further strategies to boost the efficacy of CAR T cells should rely not only on the production of CAR T cells with an improved cellular composition but also on additional changes. Such alterations could include (1) the coadministration of immunomodulatory agents capable of counteracting CLL-related immunological alterations, (2) the design of improved CAR constructs (such as third- and fourth-generation CARs), (3) the incorporation into the manufacturing process of immunomodulatory compounds overcoming the T-cell defects, and (4) the use of allogeneic CAR T cells or alternative CAR-modified cellular vectors. These strategies may allow to develop more effective CAR-modified cellular therapies capable of counteracting the more aggressive and still incurable forms of CLL.