Cargando…
Multi-domain and complex protein structure prediction using inter-domain interactions from deep learning
Accurately capturing domain-domain interactions is key to understanding protein function and designing structure-based drugs. Although AlphaFold2 has made a breakthrough on single domain, it should be noted that the structure modeling for multi-domain protein and complex remains a challenge. In this...
Autores principales: | Xia, Yuhao, Zhao, Kailong, Liu, Dong, Zhou, Xiaogen, Zhang, Guijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692239/ https://www.ncbi.nlm.nih.gov/pubmed/38040847 http://dx.doi.org/10.1038/s42003-023-05610-7 |
Ejemplares similares
-
DEMO2: Assemble multi-domain protein structures by coupling analogous template alignments with deep-learning inter-domain restraint prediction
por: Zhou, Xiaogen, et al.
Publicado: (2022) -
Protein structure and folding pathway prediction based on remote homologs recognition using PAthreader
por: Zhao, Kailong, et al.
Publicado: (2023) -
Progressive and accurate assembly of multi-domain protein structures from cryo-EM density maps
por: Zhou, Xiaogen, et al.
Publicado: (2020) -
Cryo-EM structure of the PlexinC1/A39R complex reveals inter-domain interactions critical for ligand-induced activation
por: Kuo, Yi-Chun, et al.
Publicado: (2020) -
Pathfinder: Protein folding pathway prediction based on conformational sampling
por: Huang, Zhaohong, et al.
Publicado: (2023)