Cargando…

Human Ku70/80 interacts directly with hTR, the RNA component of human telomerase

Maintenance of telomere integrity requires the dynamic interplay between telomerase, telomere-associated proteins and DNA repair proteins. These interactions are vital to suppress DNA damage responses and changes in chromosome dynamics that can result in aneuploidy or other transforming aberrations....

Descripción completa

Detalles Bibliográficos
Autores principales: Ting, Nicholas S. Y., Yu, Yaping, Pohorelic, Brant, Lees-Miller, Susan P., Beattie, Tara L.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1075923/
https://www.ncbi.nlm.nih.gov/pubmed/15824061
http://dx.doi.org/10.1093/nar/gki342
Descripción
Sumario:Maintenance of telomere integrity requires the dynamic interplay between telomerase, telomere-associated proteins and DNA repair proteins. These interactions are vital to suppress DNA damage responses and changes in chromosome dynamics that can result in aneuploidy or other transforming aberrations. The interaction between the DNA repair protein Ku and the RNA component of telomerase (TLC1) in Saccharomyces cerevisiae has been shown to be important for maintaining telomere length. Here, we sought to determine whether this interaction was conserved in higher eukaryotes. Although there is no sequence similarity between TLC1 and the RNA component (hTR) of human telomerase, we show that human Ku70/80 interacts with hTR both in vitro and in a cellular context. Specifically, Ku70/80 interacts with a 47 nt region of the 3′ end of hTR, which resembles the stem–loop region of the yeast Ku70/80 binding domain on TLC1. Furthermore, utilizing immunoprecipitation/RT–PCR experiments, we show that Ku interacts with hTR in cell lines deficient in the human telomerase reverse transcriptase protein (hTERT), suggesting that this interaction does not require hTERT. These data suggest that Ku interacts directly with hTR, independent of hTERT, providing evidence for the conservation of the interaction between Ku and telomerase RNA among various species and provide significant insight into how Ku is involved in telomere maintenance in higher eukaryotes.