Cargando…

Characterization of the DNA-binding domain and identification of the active site residue in the ‘Gyr A’ half of Leishmania donovani topoisomerase II

DNA topoisomerase II is a multidomain homodimeric enzyme that changes DNA topology by coupling ATP hydrolysis to the transport of one DNA helix through a transient double-stranded break in another. To investigate the biochemical properties of the individual domains of Leishmania donovani topoisomera...

Descripción completa

Detalles Bibliográficos
Autores principales: Sengupta, Tanushri, Mukherjee, Mandira, Das, Rakhee, Das, Aditi, Majumder, Hemanta K.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087781/
https://www.ncbi.nlm.nih.gov/pubmed/15860773
http://dx.doi.org/10.1093/nar/gki527
_version_ 1782123820867387392
author Sengupta, Tanushri
Mukherjee, Mandira
Das, Rakhee
Das, Aditi
Majumder, Hemanta K.
author_facet Sengupta, Tanushri
Mukherjee, Mandira
Das, Rakhee
Das, Aditi
Majumder, Hemanta K.
author_sort Sengupta, Tanushri
collection PubMed
description DNA topoisomerase II is a multidomain homodimeric enzyme that changes DNA topology by coupling ATP hydrolysis to the transport of one DNA helix through a transient double-stranded break in another. To investigate the biochemical properties of the individual domains of Leishmania donovani topoisomerase II, four truncation mutants were generated. Deletion of 178 aminoacids from the C-terminus (core and LdΔC1058) had no apparent effect on the DNA-binding or cleavage activities of the enzymes. However, when 429 aminoacids from the N-terminus and 451 aminoacids from the C-terminus were removed (LdΔNΔC), the enzyme was no longer active. Moreover, the removal of 429 aminoacids from the N-terminus (LdΔNΔC, core and LdΔN429) render the mutant proteins incapable of performing ATP hydrolysis. The mutant proteins show cleavage activities at wide range of KCl concentrations (25–350 mM). In addition, the mutant proteins, excepting LdΔNΔC, can also act on kDNA and linearize the minicircles. Surprisingly, the mutant proteins fail to show the formation of the enhanced cleavable complex in the presence of etoposide. Our findings suggest that the conformation required for interaction with the drug is absent in the mutant proteins. Here, we have also identified Tyr(775) through direct sequencing of the DNA linked peptide as the catalytic residue implicated in DNA-breakage and rejoining. Taken together, our results demonstrate that topoisomerase II are functionally and mechanistically conserved enzymes and the variations in activity seem to reflect functional optimization for its physiological role during parasite genome replication.
format Text
id pubmed-1087781
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-10877812005-04-29 Characterization of the DNA-binding domain and identification of the active site residue in the ‘Gyr A’ half of Leishmania donovani topoisomerase II Sengupta, Tanushri Mukherjee, Mandira Das, Rakhee Das, Aditi Majumder, Hemanta K. Nucleic Acids Res Article DNA topoisomerase II is a multidomain homodimeric enzyme that changes DNA topology by coupling ATP hydrolysis to the transport of one DNA helix through a transient double-stranded break in another. To investigate the biochemical properties of the individual domains of Leishmania donovani topoisomerase II, four truncation mutants were generated. Deletion of 178 aminoacids from the C-terminus (core and LdΔC1058) had no apparent effect on the DNA-binding or cleavage activities of the enzymes. However, when 429 aminoacids from the N-terminus and 451 aminoacids from the C-terminus were removed (LdΔNΔC), the enzyme was no longer active. Moreover, the removal of 429 aminoacids from the N-terminus (LdΔNΔC, core and LdΔN429) render the mutant proteins incapable of performing ATP hydrolysis. The mutant proteins show cleavage activities at wide range of KCl concentrations (25–350 mM). In addition, the mutant proteins, excepting LdΔNΔC, can also act on kDNA and linearize the minicircles. Surprisingly, the mutant proteins fail to show the formation of the enhanced cleavable complex in the presence of etoposide. Our findings suggest that the conformation required for interaction with the drug is absent in the mutant proteins. Here, we have also identified Tyr(775) through direct sequencing of the DNA linked peptide as the catalytic residue implicated in DNA-breakage and rejoining. Taken together, our results demonstrate that topoisomerase II are functionally and mechanistically conserved enzymes and the variations in activity seem to reflect functional optimization for its physiological role during parasite genome replication. Oxford University Press 2005 2005-04-28 /pmc/articles/PMC1087781/ /pubmed/15860773 http://dx.doi.org/10.1093/nar/gki527 Text en © The Author 2005. Published by Oxford University Press. All rights reserved
spellingShingle Article
Sengupta, Tanushri
Mukherjee, Mandira
Das, Rakhee
Das, Aditi
Majumder, Hemanta K.
Characterization of the DNA-binding domain and identification of the active site residue in the ‘Gyr A’ half of Leishmania donovani topoisomerase II
title Characterization of the DNA-binding domain and identification of the active site residue in the ‘Gyr A’ half of Leishmania donovani topoisomerase II
title_full Characterization of the DNA-binding domain and identification of the active site residue in the ‘Gyr A’ half of Leishmania donovani topoisomerase II
title_fullStr Characterization of the DNA-binding domain and identification of the active site residue in the ‘Gyr A’ half of Leishmania donovani topoisomerase II
title_full_unstemmed Characterization of the DNA-binding domain and identification of the active site residue in the ‘Gyr A’ half of Leishmania donovani topoisomerase II
title_short Characterization of the DNA-binding domain and identification of the active site residue in the ‘Gyr A’ half of Leishmania donovani topoisomerase II
title_sort characterization of the dna-binding domain and identification of the active site residue in the ‘gyr a’ half of leishmania donovani topoisomerase ii
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087781/
https://www.ncbi.nlm.nih.gov/pubmed/15860773
http://dx.doi.org/10.1093/nar/gki527
work_keys_str_mv AT senguptatanushri characterizationofthednabindingdomainandidentificationoftheactivesiteresidueinthegyrahalfofleishmaniadonovanitopoisomeraseii
AT mukherjeemandira characterizationofthednabindingdomainandidentificationoftheactivesiteresidueinthegyrahalfofleishmaniadonovanitopoisomeraseii
AT dasrakhee characterizationofthednabindingdomainandidentificationoftheactivesiteresidueinthegyrahalfofleishmaniadonovanitopoisomeraseii
AT dasaditi characterizationofthednabindingdomainandidentificationoftheactivesiteresidueinthegyrahalfofleishmaniadonovanitopoisomeraseii
AT majumderhemantak characterizationofthednabindingdomainandidentificationoftheactivesiteresidueinthegyrahalfofleishmaniadonovanitopoisomeraseii