Cargando…
A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles
BACKGROUND: We have developed the program PERMOL for semi-automated homology modeling of proteins. It is based on restrained molecular dynamics using a simulated annealing protocol in torsion angle space. As main restraints defining the optimal local geometry of the structure weighted mean dihedral...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1127110/ https://www.ncbi.nlm.nih.gov/pubmed/15819976 http://dx.doi.org/10.1186/1471-2105-6-91 |
_version_ | 1782123947668537344 |
---|---|
author | Möglich, Andreas Weinfurtner, Daniel Maurer, Till Gronwald, Wolfram Kalbitzer, Hans Robert |
author_facet | Möglich, Andreas Weinfurtner, Daniel Maurer, Till Gronwald, Wolfram Kalbitzer, Hans Robert |
author_sort | Möglich, Andreas |
collection | PubMed |
description | BACKGROUND: We have developed the program PERMOL for semi-automated homology modeling of proteins. It is based on restrained molecular dynamics using a simulated annealing protocol in torsion angle space. As main restraints defining the optimal local geometry of the structure weighted mean dihedral angles and their standard deviations are used which are calculated with an algorithm described earlier by Döker et al. (1999, BBRC, 257, 348–350). The overall long-range contacts are established via a small number of distance restraints between atoms involved in hydrogen bonds and backbone atoms of conserved residues. Employing the restraints generated by PERMOL three-dimensional structures are obtained using standard molecular dynamics programs such as DYANA or CNS. RESULTS: To test this modeling approach it has been used for predicting the structure of the histidine-containing phosphocarrier protein HPr from E. coli and the structure of the human peroxisome proliferator activated receptor γ (Ppar γ). The divergence between the modeled HPr and the previously determined X-ray structure was comparable to the divergence between the X-ray structure and the published NMR structure. The modeled structure of Ppar γ was also very close to the previously solved X-ray structure with an RMSD of 0.262 nm for the backbone atoms. CONCLUSION: In summary, we present a new method for homology modeling capable of producing high-quality structure models. An advantage of the method is that it can be used in combination with incomplete NMR data to obtain reasonable structure models in accordance with the experimental data. |
format | Text |
id | pubmed-1127110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-11271102005-05-17 A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles Möglich, Andreas Weinfurtner, Daniel Maurer, Till Gronwald, Wolfram Kalbitzer, Hans Robert BMC Bioinformatics Software BACKGROUND: We have developed the program PERMOL for semi-automated homology modeling of proteins. It is based on restrained molecular dynamics using a simulated annealing protocol in torsion angle space. As main restraints defining the optimal local geometry of the structure weighted mean dihedral angles and their standard deviations are used which are calculated with an algorithm described earlier by Döker et al. (1999, BBRC, 257, 348–350). The overall long-range contacts are established via a small number of distance restraints between atoms involved in hydrogen bonds and backbone atoms of conserved residues. Employing the restraints generated by PERMOL three-dimensional structures are obtained using standard molecular dynamics programs such as DYANA or CNS. RESULTS: To test this modeling approach it has been used for predicting the structure of the histidine-containing phosphocarrier protein HPr from E. coli and the structure of the human peroxisome proliferator activated receptor γ (Ppar γ). The divergence between the modeled HPr and the previously determined X-ray structure was comparable to the divergence between the X-ray structure and the published NMR structure. The modeled structure of Ppar γ was also very close to the previously solved X-ray structure with an RMSD of 0.262 nm for the backbone atoms. CONCLUSION: In summary, we present a new method for homology modeling capable of producing high-quality structure models. An advantage of the method is that it can be used in combination with incomplete NMR data to obtain reasonable structure models in accordance with the experimental data. BioMed Central 2005-04-08 /pmc/articles/PMC1127110/ /pubmed/15819976 http://dx.doi.org/10.1186/1471-2105-6-91 Text en Copyright © 2005 Möglich et al; licensee BioMed Central Ltd. |
spellingShingle | Software Möglich, Andreas Weinfurtner, Daniel Maurer, Till Gronwald, Wolfram Kalbitzer, Hans Robert A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles |
title | A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles |
title_full | A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles |
title_fullStr | A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles |
title_full_unstemmed | A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles |
title_short | A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles |
title_sort | restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1127110/ https://www.ncbi.nlm.nih.gov/pubmed/15819976 http://dx.doi.org/10.1186/1471-2105-6-91 |
work_keys_str_mv | AT moglichandreas arestraintmoleculardynamicsandsimulatedannealingapproachforproteinhomologymodelingutilizingmeanangles AT weinfurtnerdaniel arestraintmoleculardynamicsandsimulatedannealingapproachforproteinhomologymodelingutilizingmeanangles AT maurertill arestraintmoleculardynamicsandsimulatedannealingapproachforproteinhomologymodelingutilizingmeanangles AT gronwaldwolfram arestraintmoleculardynamicsandsimulatedannealingapproachforproteinhomologymodelingutilizingmeanangles AT kalbitzerhansrobert arestraintmoleculardynamicsandsimulatedannealingapproachforproteinhomologymodelingutilizingmeanangles AT moglichandreas restraintmoleculardynamicsandsimulatedannealingapproachforproteinhomologymodelingutilizingmeanangles AT weinfurtnerdaniel restraintmoleculardynamicsandsimulatedannealingapproachforproteinhomologymodelingutilizingmeanangles AT maurertill restraintmoleculardynamicsandsimulatedannealingapproachforproteinhomologymodelingutilizingmeanangles AT gronwaldwolfram restraintmoleculardynamicsandsimulatedannealingapproachforproteinhomologymodelingutilizingmeanangles AT kalbitzerhansrobert restraintmoleculardynamicsandsimulatedannealingapproachforproteinhomologymodelingutilizingmeanangles |