Cargando…

Control of dinucleoside polyphosphates by the FHIT-homologous HNT2 gene, adenine biosynthesis and heat shock in Saccharomyces cerevisiae

BACKGROUND: The FHIT gene is lost early in the development of many tumors. Fhit possesses intrinsic ApppA hydrolase activity though ApppA cleavage is not required for tumor suppression. Because a mutant form of Fhit that is functional in tumor suppression and defective in catalysis binds ApppA well,...

Descripción completa

Detalles Bibliográficos
Autores principales: Rubio-Texeira, Marta, Varnum, James M, Bieganowski, Pawel, Brenner, Charles
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2002
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC116438/
https://www.ncbi.nlm.nih.gov/pubmed/12028594
http://dx.doi.org/10.1186/1471-2199-3-7
Descripción
Sumario:BACKGROUND: The FHIT gene is lost early in the development of many tumors. Fhit possesses intrinsic ApppA hydrolase activity though ApppA cleavage is not required for tumor suppression. Because a mutant form of Fhit that is functional in tumor suppression and defective in catalysis binds ApppA well, it was hypothesized that Fhit-substrate complexes are the active, signaling form of Fhit. Which substrates are most important for Fhit signaling remain unknown. RESULTS: Here we demonstrate that dinucleoside polyphosphate levels increase 500-fold to hundreds of micromolar in strains devoid of the Saccharomyces cerevisiae homolog of Fhit, Hnt2. Accumulation of dinucleoside polyphosphates is reversed by re-expression of Hnt2 and is active site-dependent. Dinucleoside polyphosphate levels depend on an intact adenine biosynthetic pathway and time in liquid culture, and are induced by heat shock to greater than 0.1 millimolar even in Hnt2+ cells. CONCLUSIONS: The data indicate that Hnt2 hydrolyzes both ApppN and AppppN in vivo and that, in heat-shocked, adenine prototrophic yeast strains, dinucleoside polyphosphates accumulate to levels in which they may saturate Hnt2.