Cargando…

Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice

BACKGROUND: Outbreaks of food poisoning associated with drinking un-pasteurised apple juice contaminated with enterohaemorrhagic Escherichia coli O157:H7 are a cause of serious illness and occasionally death. Whilst a well-established heat process (pasteurisation) will readily eliminate the pathogen...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiskó, Gabriella, Roller, Sibel
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166557/
https://www.ncbi.nlm.nih.gov/pubmed/15963233
http://dx.doi.org/10.1186/1471-2180-5-36
_version_ 1782124426977869824
author Kiskó, Gabriella
Roller, Sibel
author_facet Kiskó, Gabriella
Roller, Sibel
author_sort Kiskó, Gabriella
collection PubMed
description BACKGROUND: Outbreaks of food poisoning associated with drinking un-pasteurised apple juice contaminated with enterohaemorrhagic Escherichia coli O157:H7 are a cause of serious illness and occasionally death. Whilst a well-established heat process (pasteurisation) will readily eliminate the pathogen, some consumers are demanding more fresh-like foods that have not been subjected to processing methods that are perceived as severe and may lead to loss of flavour and vitamins. Therefore, alternative methods are being investigated to replace pasteurisation and improve the safety of minimally-processed juices. The addition of natural antimicrobial substances such as the phenolic substances carvacrol and p-cymene (derived from the essential oils of herbs and spices) provides a potential new route to assure safety and extend the shelf-life of raw fruit juices. The aim of this study was to evaluate the addition of very low concentrations (0.25–1.25 mM) of carvacrol and p-cymene both individually and in combination as a novel means of controlling Escherichia coli O157:H7 in un-pasteurised apple juice. RESULTS: When inoculated at a level of 4 log CFU/ml into un-pasteurised apple juice (pH 3.20 ± 0.06), Escherichia coli O157:H7 survived for up to 3 and 19 days at 25° and 4°C, respectively. Treatment of the juice with 1.25 mM carvacrol or p-cymene reduced the numbers of E. coli O157:H7 to undetectable levels within 1–2 days at both storage temperatures. The effective concentrations of carvacrol could be reduced even further by combining it at 0.5 mM with cymene at 0.25 mM. The phenolic compounds were biocidal against both spoilage yeasts and E. coli O157:H7 thereby increasing the shelf-life and improving the safety of un-pasteurised apple juice, particularly when stored at chill temperatures. CONCLUSION: The results showed that the natural antimicrobial compounds carvacrol and p-cymene could potentially be used to extend the shelf life and improve the safety margins in un-pasteurised chilled fruit juices.
format Text
id pubmed-1166557
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-11665572005-06-30 Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice Kiskó, Gabriella Roller, Sibel BMC Microbiol Research Article BACKGROUND: Outbreaks of food poisoning associated with drinking un-pasteurised apple juice contaminated with enterohaemorrhagic Escherichia coli O157:H7 are a cause of serious illness and occasionally death. Whilst a well-established heat process (pasteurisation) will readily eliminate the pathogen, some consumers are demanding more fresh-like foods that have not been subjected to processing methods that are perceived as severe and may lead to loss of flavour and vitamins. Therefore, alternative methods are being investigated to replace pasteurisation and improve the safety of minimally-processed juices. The addition of natural antimicrobial substances such as the phenolic substances carvacrol and p-cymene (derived from the essential oils of herbs and spices) provides a potential new route to assure safety and extend the shelf-life of raw fruit juices. The aim of this study was to evaluate the addition of very low concentrations (0.25–1.25 mM) of carvacrol and p-cymene both individually and in combination as a novel means of controlling Escherichia coli O157:H7 in un-pasteurised apple juice. RESULTS: When inoculated at a level of 4 log CFU/ml into un-pasteurised apple juice (pH 3.20 ± 0.06), Escherichia coli O157:H7 survived for up to 3 and 19 days at 25° and 4°C, respectively. Treatment of the juice with 1.25 mM carvacrol or p-cymene reduced the numbers of E. coli O157:H7 to undetectable levels within 1–2 days at both storage temperatures. The effective concentrations of carvacrol could be reduced even further by combining it at 0.5 mM with cymene at 0.25 mM. The phenolic compounds were biocidal against both spoilage yeasts and E. coli O157:H7 thereby increasing the shelf-life and improving the safety of un-pasteurised apple juice, particularly when stored at chill temperatures. CONCLUSION: The results showed that the natural antimicrobial compounds carvacrol and p-cymene could potentially be used to extend the shelf life and improve the safety margins in un-pasteurised chilled fruit juices. BioMed Central 2005-06-17 /pmc/articles/PMC1166557/ /pubmed/15963233 http://dx.doi.org/10.1186/1471-2180-5-36 Text en Copyright © 2005 Kiskó and Roller; licensee BioMed Central Ltd.
spellingShingle Research Article
Kiskó, Gabriella
Roller, Sibel
Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice
title Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice
title_full Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice
title_fullStr Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice
title_full_unstemmed Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice
title_short Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice
title_sort carvacrol and p-cymene inactivate escherichia coli o157:h7 in apple juice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166557/
https://www.ncbi.nlm.nih.gov/pubmed/15963233
http://dx.doi.org/10.1186/1471-2180-5-36
work_keys_str_mv AT kiskogabriella carvacrolandpcymeneinactivateescherichiacolio157h7inapplejuice
AT rollersibel carvacrolandpcymeneinactivateescherichiacolio157h7inapplejuice