Cargando…
Actively replicating West Nile virus is resistant to cytoplasmic delivery of siRNA
BACKGROUND: West Nile virus is an emerging human pathogen for which specific antiviral therapy has not been developed. Recent studies have suggested that RNA interference (RNAi) has therapeutic potential as a sequence specific inhibitor of viral infection. Here, we examine the ability of exogenous s...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1174879/ https://www.ncbi.nlm.nih.gov/pubmed/15985182 http://dx.doi.org/10.1186/1743-422X-2-53 |
Sumario: | BACKGROUND: West Nile virus is an emerging human pathogen for which specific antiviral therapy has not been developed. Recent studies have suggested that RNA interference (RNAi) has therapeutic potential as a sequence specific inhibitor of viral infection. Here, we examine the ability of exogenous small interfering RNAs (siRNAs) to block the replication of West Nile virus in human cells. RESULTS: WNV replication and infection was greatly reduced when siRNA were introduced by cytoplasmic-targeted transfection prior to but not after the establishment of viral replication. WNV appeared to evade rather than actively block the RNAi machinery, as sequence-specific reduction in protein expression of a heterologous transgene was still observed in WNV-infected cells. However, sequence-specific decreases in WNV RNA were observed in cells undergoing active viral replication when siRNA was transfected by an alternate method, electroporation. CONCLUSION: Our results suggest that actively replicating WNV RNA may not be exposed to the cytoplasmic RNAi machinery. Thus, conventional lipid-based siRNA delivery systems may not be adequate for therapy against enveloped RNA viruses that replicate in specialized membrane compartments. |
---|