Cargando…

Identification of a novel gene encoding a flavin-dependent tRNA:m(5)U methyltransferase in bacteria—evolutionary implications

Formation of 5-methyluridine (ribothymidine) at position 54 of the T-psi loop of tRNA is catalyzed by site-specific tRNA methyltransferases (tRNA:m(5)U-54 MTase). In all Eukarya and many Gram-negative Bacteria, the methyl donor for this reaction is S-adenosyl-l-methionine (S-AdoMet), while in severa...

Descripción completa

Detalles Bibliográficos
Autores principales: Urbonavičius, Jaunius, Skouloubris, Stéphane, Myllykallio, Hannu, Grosjean, Henri
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1178002/
https://www.ncbi.nlm.nih.gov/pubmed/16027442
http://dx.doi.org/10.1093/nar/gki703
Descripción
Sumario:Formation of 5-methyluridine (ribothymidine) at position 54 of the T-psi loop of tRNA is catalyzed by site-specific tRNA methyltransferases (tRNA:m(5)U-54 MTase). In all Eukarya and many Gram-negative Bacteria, the methyl donor for this reaction is S-adenosyl-l-methionine (S-AdoMet), while in several Gram-positive Bacteria, the source of carbon is N(5), N(10)-methylenetetrahydrofolate (CH(2)H(4)folate). We have identified the gene for Bacillus subtilis tRNA:m(5)U-54 MTase. The encoded recombinant protein contains tightly bound flavin and is active in Escherichia coli mutant lacking m(5)U-54 in tRNAs and in vitro using T7 tRNA transcript as substrate. This gene is currently annotated gid in Genome Data Banks and it is here renamed trmFO. TrmFO (Gid) orthologs have also been identified in many other bacterial genomes and comparison of their amino acid sequences reveals that they are phylogenetically distinct from either ThyA or ThyX class of thymidylate synthases, which catalyze folate-dependent formation of deoxyribothymine monophosphate, the universal DNA precursor.