Cargando…

Molecular Origin of Polyglutamine Aggregation in Neurodegenerative Diseases

Expansion of polyglutamine (polyQ) tracts in proteins results in protein aggregation and is associated with cell death in at least nine neurodegenerative diseases. Disease age of onset is correlated with the polyQ insert length above a critical value of 35–40 glutamines. The aggregation kinetics of...

Descripción completa

Detalles Bibliográficos
Autores principales: Khare, Sagar D, Ding, Feng, Gwanmesia, Kenneth N, Dokholyan, Nikolay V
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1193989/
https://www.ncbi.nlm.nih.gov/pubmed/16158094
http://dx.doi.org/10.1371/journal.pcbi.0010030
Descripción
Sumario:Expansion of polyglutamine (polyQ) tracts in proteins results in protein aggregation and is associated with cell death in at least nine neurodegenerative diseases. Disease age of onset is correlated with the polyQ insert length above a critical value of 35–40 glutamines. The aggregation kinetics of isolated polyQ peptides in vitro also shows a similar critical-length dependence. While recent experimental work has provided considerable insights into polyQ aggregation, the molecular mechanism of aggregation is not well understood. Here, using computer simulations of isolated polyQ peptides, we show that a mechanism of aggregation is the conformational transition in a single polyQ peptide chain from random coil to a parallel β-helix. This transition occurs selectively in peptides longer than 37 glutamines. In the β-helices observed in simulations, all residues adopt β-strand backbone dihedral angles, and the polypeptide chain coils around a central helical axis with 18.5 ± 2 residues per turn. We also find that mutant polyQ peptides with proline-glycine inserts show formation of antiparallel β-hairpins in their ground state, in agreement with experiments. The lower stability of mutant β-helices explains their lower aggregation rates compared to wild type. Our results provide a molecular mechanism for polyQ-mediated aggregation.