Cargando…

A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption

BACKGROUND: Certain drugs, for example scopolamine and timolol, show non-linear kinetic behavior during permeation process. This non-linear kinetic behavior is due to two mechanisms; the first mechanism being a simple dissolution producing mobile and freely diffusible molecules and the second being...

Descripción completa

Detalles Bibliográficos
Autor principal: George, K
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1208919/
https://www.ncbi.nlm.nih.gov/pubmed/15992411
http://dx.doi.org/10.1186/1475-925X-4-40
_version_ 1782124933424349184
author George, K
author_facet George, K
author_sort George, K
collection PubMed
description BACKGROUND: Certain drugs, for example scopolamine and timolol, show non-linear kinetic behavior during permeation process. This non-linear kinetic behavior is due to two mechanisms; the first mechanism being a simple dissolution producing mobile and freely diffusible molecules and the second being an adsorption process producing non-mobile molecules that do not participate in the diffusion process. When such a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, C, the donor concentration. The present paper studies the effect of the parameter value, C, when the region of the contact of the skin with drug, is a line segment on the skin surface. To confirm that dual-sorption process gives an explanation to non-linear kinetic behavior, the characteristic features that are used in one-dimensional models are (1) prolongation of half-life if the plot of flux versus time are straight lines soon after the vehicle removal, (2) the decrease in half-life with increase in donor concentration. This paper introduces another feature as a characteristic to confirm that dual-sorption model gives an explanation to the non-linear kinetic behavior of the drug. This new feature is "the prolongation of half-life is not a necessary feature if the plots of drug flux versus time is a non-linear curve, soon after the vehicle removal". METHODS: From biological point of view, a drug absorption model is said to be nonlinear if the sorption isotherm is non-linear. When a model is non-linear the relationship between lag-time and donor concentration is non-linear and the lag time decreases with increase in donor concentration. A two-dimensional dual-sorption model is developed for percutaneous absorption of a drug, which shows non-linear kinetic behavior in the permeation process. This model may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. The dual-sorption model is an initial/boundary value problem which consists of (1) one non-linear, two-dimensional, second-order parabolic equation, (2) boundary conditions, (3) one initial condition. Note that, the number of boundary conditions are, six and four, respectively, if the permeation process under consideration is, during the application of the vehicle and during the removal of the vehicle. Adopting the approach of method of lines, the initial/boundary value problem is transformed into an initial-value problem, which consists of (1) a system of non-linear ordinary differential equations, (2) one initial condition. The system of non-linear ordinary differential equations contains time-dependent non-homogeneous terms, if the permeation process under consideration is, during the application of the vehicle. To solve this initial-value problem, an eight-stage sequential algorithm which is second-order accurate, and requires only tri-diagonal solvers, is developed. RESULTS: Simulation of the numerical methods described is carried out with various values of the parameter C. The illustrations are given in the form of figures. The concentration profiles are viewed as parabolas along the mesh lines parallel to x-axis or y-axis. The flow rates in different subregions of the skin-region are studied. The shapes of the concentration profiles are examined before and after the steady-state concentration is reached. The concentration reaches steady-state when the flux reaches the steady state. The plots of flux versus time and cumulative amount of drug eliminated into the receptor cell versus time are given. CONCLUSION: Based on the various values of the parameter, C, conclusions are drawn about (1) flow rate of the drug in different regions of the skin, (2) shape of the concentration profiles, (3) the time required to reach the steady-state value of the concentration, (4) concentration of the drug in different regions of the skin, when steady-state value of the concentration is reached, (5) the time required to reach the steady-state value of the flux, (6) time required to reach the steady-state value of the concentration of the drug, (7) half-life of the concentration of the drug and (8) lag-time. A comparison, between this two-dimensional model and the one-dimensional non-linear dual-sorption model that exists in the literature, is done based on (1) the shape of the concentration profiles at various time levels, (2) the time required to reach the steady-state value of the concentration, (3) lag-time and (4) half-life.
format Text
id pubmed-1208919
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-12089192005-09-15 A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption George, K Biomed Eng Online Research BACKGROUND: Certain drugs, for example scopolamine and timolol, show non-linear kinetic behavior during permeation process. This non-linear kinetic behavior is due to two mechanisms; the first mechanism being a simple dissolution producing mobile and freely diffusible molecules and the second being an adsorption process producing non-mobile molecules that do not participate in the diffusion process. When such a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, C, the donor concentration. The present paper studies the effect of the parameter value, C, when the region of the contact of the skin with drug, is a line segment on the skin surface. To confirm that dual-sorption process gives an explanation to non-linear kinetic behavior, the characteristic features that are used in one-dimensional models are (1) prolongation of half-life if the plot of flux versus time are straight lines soon after the vehicle removal, (2) the decrease in half-life with increase in donor concentration. This paper introduces another feature as a characteristic to confirm that dual-sorption model gives an explanation to the non-linear kinetic behavior of the drug. This new feature is "the prolongation of half-life is not a necessary feature if the plots of drug flux versus time is a non-linear curve, soon after the vehicle removal". METHODS: From biological point of view, a drug absorption model is said to be nonlinear if the sorption isotherm is non-linear. When a model is non-linear the relationship between lag-time and donor concentration is non-linear and the lag time decreases with increase in donor concentration. A two-dimensional dual-sorption model is developed for percutaneous absorption of a drug, which shows non-linear kinetic behavior in the permeation process. This model may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. The dual-sorption model is an initial/boundary value problem which consists of (1) one non-linear, two-dimensional, second-order parabolic equation, (2) boundary conditions, (3) one initial condition. Note that, the number of boundary conditions are, six and four, respectively, if the permeation process under consideration is, during the application of the vehicle and during the removal of the vehicle. Adopting the approach of method of lines, the initial/boundary value problem is transformed into an initial-value problem, which consists of (1) a system of non-linear ordinary differential equations, (2) one initial condition. The system of non-linear ordinary differential equations contains time-dependent non-homogeneous terms, if the permeation process under consideration is, during the application of the vehicle. To solve this initial-value problem, an eight-stage sequential algorithm which is second-order accurate, and requires only tri-diagonal solvers, is developed. RESULTS: Simulation of the numerical methods described is carried out with various values of the parameter C. The illustrations are given in the form of figures. The concentration profiles are viewed as parabolas along the mesh lines parallel to x-axis or y-axis. The flow rates in different subregions of the skin-region are studied. The shapes of the concentration profiles are examined before and after the steady-state concentration is reached. The concentration reaches steady-state when the flux reaches the steady state. The plots of flux versus time and cumulative amount of drug eliminated into the receptor cell versus time are given. CONCLUSION: Based on the various values of the parameter, C, conclusions are drawn about (1) flow rate of the drug in different regions of the skin, (2) shape of the concentration profiles, (3) the time required to reach the steady-state value of the concentration, (4) concentration of the drug in different regions of the skin, when steady-state value of the concentration is reached, (5) the time required to reach the steady-state value of the flux, (6) time required to reach the steady-state value of the concentration of the drug, (7) half-life of the concentration of the drug and (8) lag-time. A comparison, between this two-dimensional model and the one-dimensional non-linear dual-sorption model that exists in the literature, is done based on (1) the shape of the concentration profiles at various time levels, (2) the time required to reach the steady-state value of the concentration, (3) lag-time and (4) half-life. BioMed Central 2005-07-03 /pmc/articles/PMC1208919/ /pubmed/15992411 http://dx.doi.org/10.1186/1475-925X-4-40 Text en Copyright © 2005 George; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
George, K
A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption
title A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption
title_full A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption
title_fullStr A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption
title_full_unstemmed A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption
title_short A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption
title_sort two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1208919/
https://www.ncbi.nlm.nih.gov/pubmed/15992411
http://dx.doi.org/10.1186/1475-925X-4-40
work_keys_str_mv AT georgek atwodimensionalmathematicalmodelofnonlineardualsorptionofpercutaneousdrugabsorption
AT georgek twodimensionalmathematicalmodelofnonlineardualsorptionofpercutaneousdrugabsorption