Cargando…

Trapping DNA–protein binding reactions with neutral osmolytes for the analysis by gel mobility shift and self-cleavage assays

We take advantage of our previous observation that neutral osmolytes can strongly slow down the rate of DNA–protein complex dissociation to develop a method that uses osmotic stress to ‘freeze’ mixtures of DNA–protein complexes and prevent further reaction enabling analysis of the products. We apply...

Descripción completa

Detalles Bibliográficos
Autores principales: Sidorova, Nina Y., Muradymov, Shakir, Rau, Donald C.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1214545/
https://www.ncbi.nlm.nih.gov/pubmed/16155185
http://dx.doi.org/10.1093/nar/gki808
_version_ 1782124949633236992
author Sidorova, Nina Y.
Muradymov, Shakir
Rau, Donald C.
author_facet Sidorova, Nina Y.
Muradymov, Shakir
Rau, Donald C.
author_sort Sidorova, Nina Y.
collection PubMed
description We take advantage of our previous observation that neutral osmolytes can strongly slow down the rate of DNA–protein complex dissociation to develop a method that uses osmotic stress to ‘freeze’ mixtures of DNA–protein complexes and prevent further reaction enabling analysis of the products. We apply this approach to the gel mobility shift assay and use it to modify a self-cleavage assay that uses the nuclease activity of the restriction endonucleases to measure sensitively their specific binding to DNA. At sufficiently high concentrations of neutral osmolytes the cleavage reaction can be triggered at only those DNA fragments with initially bound enzyme. The self-cleavage assay allows measurement of binding equilibrium and kinetics directly in solution avoiding the intrinsic problems of gel mobility shift and filter binding assays while providing the same sensitivity level. Here we compare the self-cleavage and gel mobility shift assays applied to the DNA binding of EcoRI and BamHI restriction endonucleases. Initial results indicate that BamHI dissociation from its specific DNA sequence is strongly linked to water activity with the half-life time of the specific complex increasing ∼20-fold from 0 to 1 osmolal betaine.
format Text
id pubmed-1214545
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-12145452005-09-19 Trapping DNA–protein binding reactions with neutral osmolytes for the analysis by gel mobility shift and self-cleavage assays Sidorova, Nina Y. Muradymov, Shakir Rau, Donald C. Nucleic Acids Res Molecular Biology We take advantage of our previous observation that neutral osmolytes can strongly slow down the rate of DNA–protein complex dissociation to develop a method that uses osmotic stress to ‘freeze’ mixtures of DNA–protein complexes and prevent further reaction enabling analysis of the products. We apply this approach to the gel mobility shift assay and use it to modify a self-cleavage assay that uses the nuclease activity of the restriction endonucleases to measure sensitively their specific binding to DNA. At sufficiently high concentrations of neutral osmolytes the cleavage reaction can be triggered at only those DNA fragments with initially bound enzyme. The self-cleavage assay allows measurement of binding equilibrium and kinetics directly in solution avoiding the intrinsic problems of gel mobility shift and filter binding assays while providing the same sensitivity level. Here we compare the self-cleavage and gel mobility shift assays applied to the DNA binding of EcoRI and BamHI restriction endonucleases. Initial results indicate that BamHI dissociation from its specific DNA sequence is strongly linked to water activity with the half-life time of the specific complex increasing ∼20-fold from 0 to 1 osmolal betaine. Oxford University Press 2005 2005-09-09 /pmc/articles/PMC1214545/ /pubmed/16155185 http://dx.doi.org/10.1093/nar/gki808 Text en © The Author 2005. Published by Oxford University Press. All rights reserved
spellingShingle Molecular Biology
Sidorova, Nina Y.
Muradymov, Shakir
Rau, Donald C.
Trapping DNA–protein binding reactions with neutral osmolytes for the analysis by gel mobility shift and self-cleavage assays
title Trapping DNA–protein binding reactions with neutral osmolytes for the analysis by gel mobility shift and self-cleavage assays
title_full Trapping DNA–protein binding reactions with neutral osmolytes for the analysis by gel mobility shift and self-cleavage assays
title_fullStr Trapping DNA–protein binding reactions with neutral osmolytes for the analysis by gel mobility shift and self-cleavage assays
title_full_unstemmed Trapping DNA–protein binding reactions with neutral osmolytes for the analysis by gel mobility shift and self-cleavage assays
title_short Trapping DNA–protein binding reactions with neutral osmolytes for the analysis by gel mobility shift and self-cleavage assays
title_sort trapping dna–protein binding reactions with neutral osmolytes for the analysis by gel mobility shift and self-cleavage assays
topic Molecular Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1214545/
https://www.ncbi.nlm.nih.gov/pubmed/16155185
http://dx.doi.org/10.1093/nar/gki808
work_keys_str_mv AT sidorovaninay trappingdnaproteinbindingreactionswithneutralosmolytesfortheanalysisbygelmobilityshiftandselfcleavageassays
AT muradymovshakir trappingdnaproteinbindingreactionswithneutralosmolytesfortheanalysisbygelmobilityshiftandselfcleavageassays
AT raudonaldc trappingdnaproteinbindingreactionswithneutralosmolytesfortheanalysisbygelmobilityshiftandselfcleavageassays