Cargando…
Bacillus cereus DNA topoisomerase I and IIIα: purification, characterization and complementation of Escherichia coli TopoIII activity
The Bacillus cereus genome possesses three type IA topoisomerase genes. These genes, encoding DNA topoisomerase I and IIIα (bcTopo I, bcTopo IIIα), have been cloned into T7 RNA polymerase-regulated plasmid expression vectors and the enzymes have been overexpressed, purified and characterized. The pr...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1236973/ https://www.ncbi.nlm.nih.gov/pubmed/16192570 http://dx.doi.org/10.1093/nar/gki846 |
Sumario: | The Bacillus cereus genome possesses three type IA topoisomerase genes. These genes, encoding DNA topoisomerase I and IIIα (bcTopo I, bcTopo IIIα), have been cloned into T7 RNA polymerase-regulated plasmid expression vectors and the enzymes have been overexpressed, purified and characterized. The proteins exhibit similar biochemical activity to their Escherichia coli counterparts, DNA topoisomerase I and III (ecTopo I, ecTopo III). bcTopo I is capable of efficiently relaxing negatively supercoiled DNA in the presence of Mg(2+) but does not possess an efficient DNA decatenation activity. bcTopo IIIα is an active topoisomerase that is capable of relaxing supercoiled DNA at a broad range of Mg(2+) concentrations; however, its DNA relaxation activity is not as efficient as that of bcTopo I. In addition, bcTopo III is a potent DNA decatenase that resolves oriC-based plasmid replication intermediates in vitro. Interestingly, bcTopo I and bcTopo IIIα are both able to compensate for the loss of ecTopo III in E.coli cells that lack ecTopo I. In contrast, ecTopo I cannot substitute for ecTopo III under these conditions. |
---|