Cargando…

Developmental Exposure of Rats to Chlorpyrifos Leads to Behavioral Alterations in Adulthood, Involving Serotonergic Mechanisms and Resembling Animal Models of Depression

Developmental exposure to chlorpyrifos (CPF) causes persistent changes in serotonergic (5HT) systems. We administered 1 mg/kg/day CPF to rats on postnatal days 1–4, a regimen below the threshold for systemic toxicity. When tested in adulthood, CPF-exposed animals showed abnormalities in behavioral t...

Descripción completa

Detalles Bibliográficos
Autores principales: Aldridge, Justin E., Levin, Edward D., Seidler, Frederic J., Slotkin, Theodore A.
Formato: Texto
Lenguaje:English
Publicado: National Institue of Environmental Health Sciences 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1257542/
https://www.ncbi.nlm.nih.gov/pubmed/15866758
http://dx.doi.org/10.1289/ehp.7867
Descripción
Sumario:Developmental exposure to chlorpyrifos (CPF) causes persistent changes in serotonergic (5HT) systems. We administered 1 mg/kg/day CPF to rats on postnatal days 1–4, a regimen below the threshold for systemic toxicity. When tested in adulthood, CPF-exposed animals showed abnormalities in behavioral tests that involve 5HT mechanisms. In the elevated plus maze, males treated with CPF spent more time in the open arms, an effect seen with 5HT deficiencies in animal models of depression. Similarly, in an anhedonia test, the CPF-exposed group showed a decreased preference for chocolate milk versus water. Developmental CPF exposure also has lasting effects on cognitive function. We replicated our earlier finding that developmental CPF exposure ablates the normal sex differences in 16-arm radial maze learning and memory: during acquisition training, control male rats typically perform more accurately than do control females, but CPF treatment eliminated this normal sex difference. Females exposed to CPF showed a reduction in working and reference memory errors down to the rate of control males. Conversely, CPF-exposed males exhibited an increase in working and reference memory errors. After radial-arm acquisition training, we assessed the role of 5HT by challenging the animals with the 5HT(2) receptor antagonist ketanserin. Ketanserin did not affect performance in controls but elicited dose-dependent increases in working and reference memory errors in the CPF group, indicating an abnormal dependence on 5HT systems. Our results indicate that neonatal CPF exposures, classically thought to be subtoxic, produce lasting changes in 5HT-related behaviors that resemble animal models of depression.