Cargando…
Rearranging the centromere of the human Y chromosome with φC31 integrase
We have investigated the ability of the integrase from the Streptomyces φC31 ‘phage to either delete or invert 1 Mb of DNA around the centromere of the human Y chromosome in chicken DT40 hybrid somatic cells. Reciprocal and conservative site-specific recombination was observed in 54% of cells expres...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1266074/ https://www.ncbi.nlm.nih.gov/pubmed/16246911 http://dx.doi.org/10.1093/nar/gki922 |
_version_ | 1782125926593593344 |
---|---|
author | Malla, Sunir Dafhnis-Calas, Felix Brookfield, John F. Y. Smith, Margaret C. M. Brown, William R. A. |
author_facet | Malla, Sunir Dafhnis-Calas, Felix Brookfield, John F. Y. Smith, Margaret C. M. Brown, William R. A. |
author_sort | Malla, Sunir |
collection | PubMed |
description | We have investigated the ability of the integrase from the Streptomyces φC31 ‘phage to either delete or invert 1 Mb of DNA around the centromere of the human Y chromosome in chicken DT40 hybrid somatic cells. Reciprocal and conservative site-specific recombination was observed in 54% of cells expressing the integrase. The sites failed to recombine in the remaining cells because the sites had been damaged. The sequences of the damaged sites indicated that the damage arose as a result of repair of recombination intermediates by host cell pathways. The liability of recombination intermediates to damage is consistent with what is known about the mechanism of serine recombinase reactions. The structures of the products of the chromosome rearrangements were consistent with the published sequence of the Y chromosome indicating that the assembly of the highly repeated region between the sites is accurate to a resolution of about 50 kb. Mini-chromosomes lacking a centromere were not recovered which also suggested that neo-centromere formation occurs infrequently in vertebrate somatic cells. No ectopic recombination was observed between a φC31 integrase attB site and the chicken genome. |
format | Text |
id | pubmed-1266074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-12660742005-10-26 Rearranging the centromere of the human Y chromosome with φC31 integrase Malla, Sunir Dafhnis-Calas, Felix Brookfield, John F. Y. Smith, Margaret C. M. Brown, William R. A. Nucleic Acids Res Article We have investigated the ability of the integrase from the Streptomyces φC31 ‘phage to either delete or invert 1 Mb of DNA around the centromere of the human Y chromosome in chicken DT40 hybrid somatic cells. Reciprocal and conservative site-specific recombination was observed in 54% of cells expressing the integrase. The sites failed to recombine in the remaining cells because the sites had been damaged. The sequences of the damaged sites indicated that the damage arose as a result of repair of recombination intermediates by host cell pathways. The liability of recombination intermediates to damage is consistent with what is known about the mechanism of serine recombinase reactions. The structures of the products of the chromosome rearrangements were consistent with the published sequence of the Y chromosome indicating that the assembly of the highly repeated region between the sites is accurate to a resolution of about 50 kb. Mini-chromosomes lacking a centromere were not recovered which also suggested that neo-centromere formation occurs infrequently in vertebrate somatic cells. No ectopic recombination was observed between a φC31 integrase attB site and the chicken genome. Oxford University Press 2005 2005-10-24 /pmc/articles/PMC1266074/ /pubmed/16246911 http://dx.doi.org/10.1093/nar/gki922 Text en © The Author 2005. Published by Oxford University Press. All rights reserved |
spellingShingle | Article Malla, Sunir Dafhnis-Calas, Felix Brookfield, John F. Y. Smith, Margaret C. M. Brown, William R. A. Rearranging the centromere of the human Y chromosome with φC31 integrase |
title | Rearranging the centromere of the human Y chromosome with φC31 integrase |
title_full | Rearranging the centromere of the human Y chromosome with φC31 integrase |
title_fullStr | Rearranging the centromere of the human Y chromosome with φC31 integrase |
title_full_unstemmed | Rearranging the centromere of the human Y chromosome with φC31 integrase |
title_short | Rearranging the centromere of the human Y chromosome with φC31 integrase |
title_sort | rearranging the centromere of the human y chromosome with φc31 integrase |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1266074/ https://www.ncbi.nlm.nih.gov/pubmed/16246911 http://dx.doi.org/10.1093/nar/gki922 |
work_keys_str_mv | AT mallasunir rearrangingthecentromereofthehumanychromosomewithphc31integrase AT dafhniscalasfelix rearrangingthecentromereofthehumanychromosomewithphc31integrase AT brookfieldjohnfy rearrangingthecentromereofthehumanychromosomewithphc31integrase AT smithmargaretcm rearrangingthecentromereofthehumanychromosomewithphc31integrase AT brownwilliamra rearrangingthecentromereofthehumanychromosomewithphc31integrase |