Cargando…

Killing the umpire: cooperative defects in mitotic checkpoint and BRCA2 genes on the road to transformation

Recent findings from mouse models of BRCA2 genetic lesions have provided intriguing insights and important questions concerning modes of tumor development in familial breast and ovarian cancers. Fibroblasts from mice homozygous for the BRCA2(Tr) allele grow poorly and display an array of chromosomal...

Descripción completa

Detalles Bibliográficos
Autor principal: McKeon, Frank
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC138502/
https://www.ncbi.nlm.nih.gov/pubmed/11250674
http://dx.doi.org/10.1186/bcr4
Descripción
Sumario:Recent findings from mouse models of BRCA2 genetic lesions have provided intriguing insights and important questions concerning modes of tumor development in familial breast and ovarian cancers. Fibroblasts from mice homozygous for the BRCA2(Tr) allele grow poorly and display an array of chromosomal abnormalities that are consistent with a role for BRCA2 in DNA repair. This growth defect can be overcome and cellular transformation promoted by the expression of defective, dominant negative alleles of p53 and of the mitotic checkpoint gene Bub1, both of which are known to induce chromosome instability. These findings are mirrored in the genetic lesions sustained in tumors found in the rare BRCA2(Tr/Tr)mice that survive to adulthood, which include defects in p53 as well as the mitotic checkpoint proteins Bub1 and Mad3L. Together, these data hint that tumors in these mice evolve from an unusually intense selective pressure to remove DNA damage checkpoints, which in turn might be facilitated by chromosomal abolition of mitotic checkpoints and the consequent increase in shuffling of genetic information. How these genetic lesions co-operate to yield transformed cells and how these data relate to BRCA1 and BRCA2 defects in the human population are important questions raised by this work.