Cargando…
Bias in error estimation when using cross-validation for model selection
BACKGROUND: Cross-validation (CV) is an effective method for estimating the prediction error of a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing classifier parameter values that minimize the CV error estimate. We have evaluated the validity of using the...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1397873/ https://www.ncbi.nlm.nih.gov/pubmed/16504092 http://dx.doi.org/10.1186/1471-2105-7-91 |