Cargando…
Bias in error estimation when using cross-validation for model selection
BACKGROUND: Cross-validation (CV) is an effective method for estimating the prediction error of a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing classifier parameter values that minimize the CV error estimate. We have evaluated the validity of using the...
Autores principales: | Varma, Sudhir, Simon, Richard |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1397873/ https://www.ncbi.nlm.nih.gov/pubmed/16504092 http://dx.doi.org/10.1186/1471-2105-7-91 |
Ejemplares similares
-
Systematic Error Modeling and Bias Estimation
por: Zhang, Feihu, et al.
Publicado: (2016) -
Measuring the bias of incorrect application of feature selection when using cross-validation in radiomics
por: Demircioğlu, Aydin
Publicado: (2021) -
Quantification of the Impact of Feature Selection on the Variance of Cross-Validation Error Estimation
por: Xiao, Yufei, et al.
Publicado: (2007) -
Understanding the potential bias of variance components estimators when using genomic models
por: Cuyabano, Beatriz C. D., et al.
Publicado: (2018) -
Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation
por: Baumann, Désirée, et al.
Publicado: (2014)