Cargando…

High potency silencing by single-stranded boranophosphate siRNA

In RNA interference (RNAi), double-stranded short interfering RNA (ds-siRNA) inhibits expression from complementary mRNAs. Recently, it was demonstrated that short, single-stranded antisense RNA (ss-siRNA) can also induce RNAi. While ss-siRNA may offer several advantages in both clinical and researc...

Descripción completa

Detalles Bibliográficos
Autores principales: Hall, Allison H. S., Wan, Jing, Spesock, April, Sergueeva, Zinaida, Shaw, Barbara Ramsay, Alexander, Kenneth A.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464415/
https://www.ncbi.nlm.nih.gov/pubmed/16717282
http://dx.doi.org/10.1093/nar/gkl339
Descripción
Sumario:In RNA interference (RNAi), double-stranded short interfering RNA (ds-siRNA) inhibits expression from complementary mRNAs. Recently, it was demonstrated that short, single-stranded antisense RNA (ss-siRNA) can also induce RNAi. While ss-siRNA may offer several advantages in both clinical and research applications, its overall poor activity compared with ds-siRNA has prevented its widespread use. In contrast to the poor gene silencing activity of native ss-siRNA, we found that the silencing activity of boranophosphate-modified ss-siRNA is comparable with that of unmodified ds-siRNA. Boranophosphate ss-siRNA has excellent maximum silencing activity and is highly effective at low concentrations. The silencing activity of boranophosphate ss-siRNA is also durable, with significant silencing up to 1 week after transfection. Thus, we have demonstrated that boranophosphate-modified ss-siRNA can silence gene expression as well as native ds-siRNA, suggesting that boranophosphate-modified ss-siRNAs should be investigated as a potential new class of therapeutic agents.