Cargando…

Identification of 6-hydroxy-trans,trans-2,4-hexadienoic acid, a novel ring-opened urinary metabolite of benzene.

We studied the in vivo metabolism of benzene in mice to ring-opened compounds excreted in urine. Male CD-1 mice were treated intraperitoneally with benzene (110-440 mg/kg), [14C]benzene (220 mg/kg) or trans, trans-muconaldehyde (MUC; 4 mg/kg), a microsomal, hematotoxic metabolite of benzene. Urine,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kline, S A, Robertson, J F, Grotz, V L, Goldstein, B D, Witz, G
Formato: Texto
Lenguaje:English
Publicado: 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519806/
https://www.ncbi.nlm.nih.gov/pubmed/8275987
Descripción
Sumario:We studied the in vivo metabolism of benzene in mice to ring-opened compounds excreted in urine. Male CD-1 mice were treated intraperitoneally with benzene (110-440 mg/kg), [14C]benzene (220 mg/kg) or trans, trans-muconaldehyde (MUC; 4 mg/kg), a microsomal, hematotoxic metabolite of benzene. Urine, collected over 24 hr, was extracted and analyzed by HPLC with a diode-array detector and by scintillation counting. In addition to trans,trans-muconic acid, previously the only known ring-opened urinary benzene metabolite, a new metabolite, 6-hydroxy-trans,trans-2,4-hexadienoic acid, was detected in urine of mice treated with either benzene or MUC. We identified the new metabolite based on coelution of metabolites and UV spectral comparison with authentic standards in unmethylated and methylated urine extracts. Results presented here are consistent with the intermediacy of MUC in the in vivo metabolism of benzene to ring-opened metabolites.