Cargando…
Noise-injected neural networks show promise for use on small-sample expression data
BACKGROUND: Overfitting the data is a salient issue for classifier design in small-sample settings. This is why selecting a classifier from a constrained family of classifiers, ones that do not possess the potential to too finely partition the feature space, is typically preferable. But overfitting...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524820/ https://www.ncbi.nlm.nih.gov/pubmed/16737545 http://dx.doi.org/10.1186/1471-2105-7-274 |