Cargando…

Family-Based versus Unrelated Case-Control Designs for Genetic Associations

The most simple and commonly used approach for genetic associations is the case-control study design of unrelated people. This design is susceptible to population stratification. This problem is obviated in family-based studies, but it is usually difficult to accumulate large enough samples of well-...

Descripción completa

Detalles Bibliográficos
Autores principales: Evangelou, Evangelos, Trikalinos, Thomas A, Salanti, Georgia, Ioannidis, John P. A
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1534078/
https://www.ncbi.nlm.nih.gov/pubmed/16895437
http://dx.doi.org/10.1371/journal.pgen.0020123
Descripción
Sumario:The most simple and commonly used approach for genetic associations is the case-control study design of unrelated people. This design is susceptible to population stratification. This problem is obviated in family-based studies, but it is usually difficult to accumulate large enough samples of well-characterized families. We addressed empirically whether the two designs give similar estimates of association in 93 investigations where both unrelated case-control and family-based designs had been employed. Estimated odds ratios differed beyond chance between the two designs in only four instances (4%). The summary relative odds ratio (ROR) (the ratio of odds ratios obtained from unrelated case-control and family-based studies) was close to unity (0.96 [95% confidence interval, 0.91–1.01]). There was no heterogeneity in the ROR across studies (amount of heterogeneity beyond chance I(2) = 0%). Differences on whether results were nominally statistically significant (p < 0.05) or not with the two designs were common (opposite classification rates 14% and 17%); this reflected largely differences in power. Conclusions were largely similar in diverse subgroup analyses. Unrelated case-control and family-based designs give overall similar estimates of association. We cannot rule out rare large biases or common small biases.