Cargando…

Transient change in GABA(A )receptor subunit mRNA expression in Lurcher cerebellar nuclei during Purkinje cell degeneration

BACKGROUND: Lurcher mice suffer from a complete Purkinje cell (PC) loss in the first four postnatal weeks. Parallel to this degeneration, GABAergic synapses in the deep cerebellar nuclei (DCN), the major recipient of the inhibitory PC projection, increase synaptic conductance. Here, we further inves...

Descripción completa

Detalles Bibliográficos
Autores principales: Linnemann, C, Schmeh, I, Thier, P, Schwarz, C
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1544347/
https://www.ncbi.nlm.nih.gov/pubmed/16872511
http://dx.doi.org/10.1186/1471-2202-7-59
Descripción
Sumario:BACKGROUND: Lurcher mice suffer from a complete Purkinje cell (PC) loss in the first four postnatal weeks. Parallel to this degeneration, GABAergic synapses in the deep cerebellar nuclei (DCN), the major recipient of the inhibitory PC projection, increase synaptic conductance. Here, we further investigated this phenomenon, using real-time RT-PCR to assess GABA(A )receptor subunit gene expression during PC degeneration. RESULTS: We observed a specific reduction in γ2 subunit gene expression, while α1–5, β1–2, γ1,3 and δ subunits were unaffected. We made two further specific findings. First, the difference in gene expression was shown in tissue from DCN only. Neither the hippocampus nor coronal sections through the forebrain showed such effects. Furthermore, the involvement of different levels of corticosterone, a possible humeral trigger for differences in gene expression, could be excluded. Second, like the known potentiation of GABAergic synapses, the γ2 down-regulation was present only after the onset of degeneration at p14. The difference in γ2 mRNA expression, however, appeared transient, since it was no longer detectable in adult Lurcher mice. CONCLUSION: In conclusion, the down-regulation of γ2 subunits may be related to differences in synaptic efficacy and, as such, may reflect the initial phase of adaptive responses of DCN tissue to massive GABAergic deafferentation. Its transient course, however, does not support the idea that modulations in GABAergic transmission are at the basis of the well-known DCN-based functional benefit of Lurcher mice present throughout their life.