Cargando…

The cyclin D1b splice variant: an old oncogene learns new tricks

The function of cyclin D1 as a positive regulator of the cell cycle and proto-oncogene has been well established. Cyclin D1 elicits its pro-proliferative function early in G1 phase, through its ability to activate cyclin dependent kinase (CDK) 4 or 6. Active CDK4/6-cyclin D1 complexes phosphorylate...

Descripción completa

Detalles Bibliográficos
Autor principal: Knudsen, Karen E
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559605/
https://www.ncbi.nlm.nih.gov/pubmed/16863592
http://dx.doi.org/10.1186/1747-1028-1-15
_version_ 1782129434047807488
author Knudsen, Karen E
author_facet Knudsen, Karen E
author_sort Knudsen, Karen E
collection PubMed
description The function of cyclin D1 as a positive regulator of the cell cycle and proto-oncogene has been well established. Cyclin D1 elicits its pro-proliferative function early in G1 phase, through its ability to activate cyclin dependent kinase (CDK) 4 or 6. Active CDK4/6-cyclin D1 complexes phosphorylate substrates that are critical for modulating G1 to S phase progression, and in this manner promote cellular proliferation. Emerging data from a number of model systems revealed that cyclin D1 also holds multiple, kinase-independent cellular functions. First, cyclin D1 assists in sequestering CDK inhibitors (e.g. p27(kip1)), thus bolstering late G1 CDK activity. Second, cyclin D1 is known to bind and modulate the action of several transcription factors that hold significance in human cancers. Thus, cyclin D1 impinges on several distinct pathways that govern cancer cell proliferation. Although intragenic somatic mutation of cyclin D1 in human disease is rare, cyclin D1 gene translocation, amplification and/or overexpression are frequent events in selected tumor types. Additionally, a polymorphism in the cyclin D1 locus that may affect splicing has been implicated in increased cancer risk or poor outcome. Recent functional analyses of an established cyclin D1 splice variant, cyclin D1b, revealed that the cyclin D1b isoform harbors unique activities in cancer cells. Here, we review the literature implicating cyclin D1b as a mediator of aberrant cellular proliferation in cancer. The differential roles of cyclin D1 and the cyclin D1b splice variant in prostate cancer will be also be addressed, wherein divergent functions have been linked to altered proliferative control.
format Text
id pubmed-1559605
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-15596052006-09-02 The cyclin D1b splice variant: an old oncogene learns new tricks Knudsen, Karen E Cell Div Review The function of cyclin D1 as a positive regulator of the cell cycle and proto-oncogene has been well established. Cyclin D1 elicits its pro-proliferative function early in G1 phase, through its ability to activate cyclin dependent kinase (CDK) 4 or 6. Active CDK4/6-cyclin D1 complexes phosphorylate substrates that are critical for modulating G1 to S phase progression, and in this manner promote cellular proliferation. Emerging data from a number of model systems revealed that cyclin D1 also holds multiple, kinase-independent cellular functions. First, cyclin D1 assists in sequestering CDK inhibitors (e.g. p27(kip1)), thus bolstering late G1 CDK activity. Second, cyclin D1 is known to bind and modulate the action of several transcription factors that hold significance in human cancers. Thus, cyclin D1 impinges on several distinct pathways that govern cancer cell proliferation. Although intragenic somatic mutation of cyclin D1 in human disease is rare, cyclin D1 gene translocation, amplification and/or overexpression are frequent events in selected tumor types. Additionally, a polymorphism in the cyclin D1 locus that may affect splicing has been implicated in increased cancer risk or poor outcome. Recent functional analyses of an established cyclin D1 splice variant, cyclin D1b, revealed that the cyclin D1b isoform harbors unique activities in cancer cells. Here, we review the literature implicating cyclin D1b as a mediator of aberrant cellular proliferation in cancer. The differential roles of cyclin D1 and the cyclin D1b splice variant in prostate cancer will be also be addressed, wherein divergent functions have been linked to altered proliferative control. BioMed Central 2006-07-24 /pmc/articles/PMC1559605/ /pubmed/16863592 http://dx.doi.org/10.1186/1747-1028-1-15 Text en Copyright © 2006 Knudsen; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
Knudsen, Karen E
The cyclin D1b splice variant: an old oncogene learns new tricks
title The cyclin D1b splice variant: an old oncogene learns new tricks
title_full The cyclin D1b splice variant: an old oncogene learns new tricks
title_fullStr The cyclin D1b splice variant: an old oncogene learns new tricks
title_full_unstemmed The cyclin D1b splice variant: an old oncogene learns new tricks
title_short The cyclin D1b splice variant: an old oncogene learns new tricks
title_sort cyclin d1b splice variant: an old oncogene learns new tricks
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559605/
https://www.ncbi.nlm.nih.gov/pubmed/16863592
http://dx.doi.org/10.1186/1747-1028-1-15
work_keys_str_mv AT knudsenkarene thecyclind1bsplicevariantanoldoncogenelearnsnewtricks
AT knudsenkarene cyclind1bsplicevariantanoldoncogenelearnsnewtricks