Cargando…
Nutritional needs in environmental intoxication: vitamin E and air pollution, an example.
Dietary vitamin E affects the susceptibility of mice and rats to ozone and nitrogen dioxide, suggesting a free radical mechanism of toxicity. Conventional peroxidation does not completely explain the effects of alterations of lung fatty acid composition on both nitrogen dioxide and ozone toxicity. A...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
1979
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637365/ https://www.ncbi.nlm.nih.gov/pubmed/510230 |
Sumario: | Dietary vitamin E affects the susceptibility of mice and rats to ozone and nitrogen dioxide, suggesting a free radical mechanism of toxicity. Conventional peroxidation does not completely explain the effects of alterations of lung fatty acid composition on both nitrogen dioxide and ozone toxicity. A new scheme is proposed based on the cyclization of beta, gamma-allylic peroxyl free radicals to monocyclic and bicyclic peroxides to explain the relationship between diet and toxicity. Similar results are likely with other toxicants producing peroxidation as a mechanism of toxicity. Such cyclic peroxides may mimic or interfere with the prostaglandin system. Several chronic diseases may be exacerbated through such a subtle toxic mechanism. The level of vitamin E needed for protection against peroxidation toxicity may be much greater than the present U. S. dietary intake. |
---|