Cargando…
Proteome analysis of yeast response to various nutrient limitations
We compared the response of Saccharomyces cerevisiae to carbon (glucose) and nitrogen (ammonia) limitation in chemostat cultivation at the proteome level. Protein levels were differentially quantified using unlabeled and (15)N metabolically labeled yeast cultures. A total of 928 proteins covering a...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1681501/ https://www.ncbi.nlm.nih.gov/pubmed/16738570 http://dx.doi.org/10.1038/msb4100069 |
_version_ | 1782131160194744320 |
---|---|
author | Kolkman, Annemieke Daran-Lapujade, Pascale Fullaondo, Asier Olsthoorn, Maurien M A Pronk, Jack T Slijper, Monique Heck, Albert J R |
author_facet | Kolkman, Annemieke Daran-Lapujade, Pascale Fullaondo, Asier Olsthoorn, Maurien M A Pronk, Jack T Slijper, Monique Heck, Albert J R |
author_sort | Kolkman, Annemieke |
collection | PubMed |
description | We compared the response of Saccharomyces cerevisiae to carbon (glucose) and nitrogen (ammonia) limitation in chemostat cultivation at the proteome level. Protein levels were differentially quantified using unlabeled and (15)N metabolically labeled yeast cultures. A total of 928 proteins covering a wide range of isoelectric points, molecular weights and subcellular localizations were identified. Stringent statistical analysis identified 51 proteins upregulated in response to glucose limitation and 51 upregulated in response to ammonia limitation. Under glucose limitation, typical glucose-repressed genes encoding proteins involved in alternative carbon source utilization, fatty acids β-oxidation and oxidative phosphorylation displayed an increased protein level. Proteins upregulated in response to nitrogen limitation were mostly involved in scavenging of alternative nitrogen sources and protein degradation. Comparison of transcript and protein levels clearly showed that upregulation in response to glucose limitation was mainly transcriptionally controlled, whereas upregulation in response to nitrogen limitation was essentially controlled at the post-transcriptional level by increased translational efficiency and/or decreased protein degradation. These observations underline the need for multilevel analysis in yeast systems biology. |
format | Text |
id | pubmed-1681501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
record_format | MEDLINE/PubMed |
spelling | pubmed-16815012007-01-25 Proteome analysis of yeast response to various nutrient limitations Kolkman, Annemieke Daran-Lapujade, Pascale Fullaondo, Asier Olsthoorn, Maurien M A Pronk, Jack T Slijper, Monique Heck, Albert J R Mol Syst Biol Article We compared the response of Saccharomyces cerevisiae to carbon (glucose) and nitrogen (ammonia) limitation in chemostat cultivation at the proteome level. Protein levels were differentially quantified using unlabeled and (15)N metabolically labeled yeast cultures. A total of 928 proteins covering a wide range of isoelectric points, molecular weights and subcellular localizations were identified. Stringent statistical analysis identified 51 proteins upregulated in response to glucose limitation and 51 upregulated in response to ammonia limitation. Under glucose limitation, typical glucose-repressed genes encoding proteins involved in alternative carbon source utilization, fatty acids β-oxidation and oxidative phosphorylation displayed an increased protein level. Proteins upregulated in response to nitrogen limitation were mostly involved in scavenging of alternative nitrogen sources and protein degradation. Comparison of transcript and protein levels clearly showed that upregulation in response to glucose limitation was mainly transcriptionally controlled, whereas upregulation in response to nitrogen limitation was essentially controlled at the post-transcriptional level by increased translational efficiency and/or decreased protein degradation. These observations underline the need for multilevel analysis in yeast systems biology. 2006-05-16 /pmc/articles/PMC1681501/ /pubmed/16738570 http://dx.doi.org/10.1038/msb4100069 Text en Copyright © 2006, EMBO and Nature Publishing Group |
spellingShingle | Article Kolkman, Annemieke Daran-Lapujade, Pascale Fullaondo, Asier Olsthoorn, Maurien M A Pronk, Jack T Slijper, Monique Heck, Albert J R Proteome analysis of yeast response to various nutrient limitations |
title | Proteome analysis of yeast response to various nutrient limitations |
title_full | Proteome analysis of yeast response to various nutrient limitations |
title_fullStr | Proteome analysis of yeast response to various nutrient limitations |
title_full_unstemmed | Proteome analysis of yeast response to various nutrient limitations |
title_short | Proteome analysis of yeast response to various nutrient limitations |
title_sort | proteome analysis of yeast response to various nutrient limitations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1681501/ https://www.ncbi.nlm.nih.gov/pubmed/16738570 http://dx.doi.org/10.1038/msb4100069 |
work_keys_str_mv | AT kolkmanannemieke proteomeanalysisofyeastresponsetovariousnutrientlimitations AT daranlapujadepascale proteomeanalysisofyeastresponsetovariousnutrientlimitations AT fullaondoasier proteomeanalysisofyeastresponsetovariousnutrientlimitations AT olsthoornmaurienma proteomeanalysisofyeastresponsetovariousnutrientlimitations AT pronkjackt proteomeanalysisofyeastresponsetovariousnutrientlimitations AT slijpermonique proteomeanalysisofyeastresponsetovariousnutrientlimitations AT heckalbertjr proteomeanalysisofyeastresponsetovariousnutrientlimitations |