Cargando…
Epigenetic Control of the foxp3 Locus in Regulatory T Cells
Compelling evidence suggests that the transcription factor Foxp3 acts as a master switch governing the development and function of CD4(+) regulatory T cells (Tregs). However, whether transcriptional control of Foxp3 expression itself contributes to the development of a stable Treg lineage has thus f...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1783672/ https://www.ncbi.nlm.nih.gov/pubmed/17298177 http://dx.doi.org/10.1371/journal.pbio.0050038 |
Sumario: | Compelling evidence suggests that the transcription factor Foxp3 acts as a master switch governing the development and function of CD4(+) regulatory T cells (Tregs). However, whether transcriptional control of Foxp3 expression itself contributes to the development of a stable Treg lineage has thus far not been investigated. We here identified an evolutionarily conserved region within the foxp3 locus upstream of exon-1 possessing transcriptional activity. Bisulphite sequencing and chromatin immunoprecipitation revealed complete demethylation of CpG motifs as well as histone modifications within the conserved region in ex vivo isolated Foxp3(+)CD25(+)CD4(+) Tregs, but not in naïve CD25(−)CD4(+) T cells. Partial DNA demethylation is already found within developing Foxp3(+) thymocytes; however, Tregs induced by TGF-β in vitro display only incomplete demethylation despite high Foxp3 expression. In contrast to natural Tregs, these TGF-β–induced Foxp3(+) Tregs lose both Foxp3 expression and suppressive activity upon restimulation in the absence of TGF-β. Our data suggest that expression of Foxp3 must be stabilized by epigenetic modification to allow the development of a permanent suppressor cell lineage, a finding of significant importance for therapeutic applications involving induction or transfer of Tregs and for the understanding of long-term cell lineage decisions. |
---|