Cargando…

Predicting domain-domain interactions using a parsimony approach

We propose a novel approach to predict domain-domain interactions from a protein-protein interaction network. In our method we apply a parsimony-driven explanation of the network, where the domain interactions are inferred using linear programming optimization, and false positives in the protein net...

Descripción completa

Detalles Bibliográficos
Autores principales: Guimarães, Katia S, Jothi, Raja, Zotenko, Elena, Przytycka, Teresa M
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794579/
https://www.ncbi.nlm.nih.gov/pubmed/17094802
http://dx.doi.org/10.1186/gb-2006-7-11-r104
_version_ 1782132215963975680
author Guimarães, Katia S
Jothi, Raja
Zotenko, Elena
Przytycka, Teresa M
author_facet Guimarães, Katia S
Jothi, Raja
Zotenko, Elena
Przytycka, Teresa M
author_sort Guimarães, Katia S
collection PubMed
description We propose a novel approach to predict domain-domain interactions from a protein-protein interaction network. In our method we apply a parsimony-driven explanation of the network, where the domain interactions are inferred using linear programming optimization, and false positives in the protein network are handled by a probabilistic construction. This method outperforms previous approaches by a considerable margin. The results indicate that the parsimony principle provides a correct approach for detecting domain-domain contacts.
format Text
id pubmed-1794579
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-17945792007-02-08 Predicting domain-domain interactions using a parsimony approach Guimarães, Katia S Jothi, Raja Zotenko, Elena Przytycka, Teresa M Genome Biol Method We propose a novel approach to predict domain-domain interactions from a protein-protein interaction network. In our method we apply a parsimony-driven explanation of the network, where the domain interactions are inferred using linear programming optimization, and false positives in the protein network are handled by a probabilistic construction. This method outperforms previous approaches by a considerable margin. The results indicate that the parsimony principle provides a correct approach for detecting domain-domain contacts. BioMed Central 2006 2006-11-09 /pmc/articles/PMC1794579/ /pubmed/17094802 http://dx.doi.org/10.1186/gb-2006-7-11-r104 Text en Copyright © 2006 Guimarães et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method
Guimarães, Katia S
Jothi, Raja
Zotenko, Elena
Przytycka, Teresa M
Predicting domain-domain interactions using a parsimony approach
title Predicting domain-domain interactions using a parsimony approach
title_full Predicting domain-domain interactions using a parsimony approach
title_fullStr Predicting domain-domain interactions using a parsimony approach
title_full_unstemmed Predicting domain-domain interactions using a parsimony approach
title_short Predicting domain-domain interactions using a parsimony approach
title_sort predicting domain-domain interactions using a parsimony approach
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794579/
https://www.ncbi.nlm.nih.gov/pubmed/17094802
http://dx.doi.org/10.1186/gb-2006-7-11-r104
work_keys_str_mv AT guimaraeskatias predictingdomaindomaininteractionsusingaparsimonyapproach
AT jothiraja predictingdomaindomaininteractionsusingaparsimonyapproach
AT zotenkoelena predictingdomaindomaininteractionsusingaparsimonyapproach
AT przytyckateresam predictingdomaindomaininteractionsusingaparsimonyapproach