Cargando…
Predicting domain-domain interactions using a parsimony approach
We propose a novel approach to predict domain-domain interactions from a protein-protein interaction network. In our method we apply a parsimony-driven explanation of the network, where the domain interactions are inferred using linear programming optimization, and false positives in the protein net...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794579/ https://www.ncbi.nlm.nih.gov/pubmed/17094802 http://dx.doi.org/10.1186/gb-2006-7-11-r104 |
_version_ | 1782132215963975680 |
---|---|
author | Guimarães, Katia S Jothi, Raja Zotenko, Elena Przytycka, Teresa M |
author_facet | Guimarães, Katia S Jothi, Raja Zotenko, Elena Przytycka, Teresa M |
author_sort | Guimarães, Katia S |
collection | PubMed |
description | We propose a novel approach to predict domain-domain interactions from a protein-protein interaction network. In our method we apply a parsimony-driven explanation of the network, where the domain interactions are inferred using linear programming optimization, and false positives in the protein network are handled by a probabilistic construction. This method outperforms previous approaches by a considerable margin. The results indicate that the parsimony principle provides a correct approach for detecting domain-domain contacts. |
format | Text |
id | pubmed-1794579 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-17945792007-02-08 Predicting domain-domain interactions using a parsimony approach Guimarães, Katia S Jothi, Raja Zotenko, Elena Przytycka, Teresa M Genome Biol Method We propose a novel approach to predict domain-domain interactions from a protein-protein interaction network. In our method we apply a parsimony-driven explanation of the network, where the domain interactions are inferred using linear programming optimization, and false positives in the protein network are handled by a probabilistic construction. This method outperforms previous approaches by a considerable margin. The results indicate that the parsimony principle provides a correct approach for detecting domain-domain contacts. BioMed Central 2006 2006-11-09 /pmc/articles/PMC1794579/ /pubmed/17094802 http://dx.doi.org/10.1186/gb-2006-7-11-r104 Text en Copyright © 2006 Guimarães et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Method Guimarães, Katia S Jothi, Raja Zotenko, Elena Przytycka, Teresa M Predicting domain-domain interactions using a parsimony approach |
title | Predicting domain-domain interactions using a parsimony approach |
title_full | Predicting domain-domain interactions using a parsimony approach |
title_fullStr | Predicting domain-domain interactions using a parsimony approach |
title_full_unstemmed | Predicting domain-domain interactions using a parsimony approach |
title_short | Predicting domain-domain interactions using a parsimony approach |
title_sort | predicting domain-domain interactions using a parsimony approach |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794579/ https://www.ncbi.nlm.nih.gov/pubmed/17094802 http://dx.doi.org/10.1186/gb-2006-7-11-r104 |
work_keys_str_mv | AT guimaraeskatias predictingdomaindomaininteractionsusingaparsimonyapproach AT jothiraja predictingdomaindomaininteractionsusingaparsimonyapproach AT zotenkoelena predictingdomaindomaininteractionsusingaparsimonyapproach AT przytyckateresam predictingdomaindomaininteractionsusingaparsimonyapproach |