Cargando…
Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer
BACKGROUND: Alterations of chromosome 8 and hypomethylation of LINE-1 retrotransposons are common alterations in advanced prostate carcinoma. In a former study including many metastatic cases, they strongly correlated with each other. To elucidate a possible interaction between the two alterations,...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797054/ https://www.ncbi.nlm.nih.gov/pubmed/17280610 http://dx.doi.org/10.1186/1476-4598-6-14 |
_version_ | 1782132294960545792 |
---|---|
author | Schulz, Wolfgang A Alexa, Adrian Jung, Volker Hader, Christiane Hoffmann, Michèle J Yamanaka, Masanori Fritzsche, Sandy Wlazlinski, Agnes Müller, Mirko Lengauer, Thomas Engers, Rainer Florl, Andrea R Wullich, Bernd Rahnenführer, Jörg |
author_facet | Schulz, Wolfgang A Alexa, Adrian Jung, Volker Hader, Christiane Hoffmann, Michèle J Yamanaka, Masanori Fritzsche, Sandy Wlazlinski, Agnes Müller, Mirko Lengauer, Thomas Engers, Rainer Florl, Andrea R Wullich, Bernd Rahnenführer, Jörg |
author_sort | Schulz, Wolfgang A |
collection | PubMed |
description | BACKGROUND: Alterations of chromosome 8 and hypomethylation of LINE-1 retrotransposons are common alterations in advanced prostate carcinoma. In a former study including many metastatic cases, they strongly correlated with each other. To elucidate a possible interaction between the two alterations, we investigated their relationship in less advanced prostate cancers. RESULTS: In 50 primary tumor tissues, no correlation was observed between chromosome 8 alterations determined by comparative genomic hybridization and LINE-1 hypomethylation measured by Southern blot hybridization. The discrepancy towards the former study, which had been dominated by advanced stage cases, suggests that both alterations converge and interact during prostate cancer progression. Therefore, interaction analysis was performed on microarray-based expression profiles of cancers harboring both alterations, only one, or none. Application of a novel bioinformatic method identified Gene Ontology (GO) groups related to innate immunity, cytoskeletal organization and cell adhesion as common targets of both alterations. Many genes targeted by their interaction were involved in type I and II interferon signaling and several were functionally related to hereditary prostate cancer genes. In addition, the interaction appeared to influence a switch in the expression pattern of EPB41L genes encoding 4.1 cytoskeleton proteins. Real-time RT-PCR revealed GADD45A, MX1, EPB41L3/DAL1, and FBLN1 as generally downregulated in prostate cancer, whereas HOXB13 and EPB41L4B were upregulated. TLR3 was downregulated in a subset of the cases and associated with recurrence. Downregulation of EPB41L3, but not of GADD45A, was associated with promoter hypermethylation, which was detected in 79% of carcinoma samples. CONCLUSION: Alterations of chromosome 8 and DNA hypomethylation in prostate cancer probably do not cause each other, but converge during progression. The present analysis implicates their interaction in innate immune response suppression and cytoskeletal changes during prostate cancer progression. The study thus highlights novel mechanisms in prostate cancer progression and identifies novel candidate genes for diagnostic and therapeutic purposes. In particular, TLR3 expression might be useful for prostate cancer prognosis and EPB41L3 hypermethylation for its detection. |
format | Text |
id | pubmed-1797054 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-17970542007-02-13 Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer Schulz, Wolfgang A Alexa, Adrian Jung, Volker Hader, Christiane Hoffmann, Michèle J Yamanaka, Masanori Fritzsche, Sandy Wlazlinski, Agnes Müller, Mirko Lengauer, Thomas Engers, Rainer Florl, Andrea R Wullich, Bernd Rahnenführer, Jörg Mol Cancer Research BACKGROUND: Alterations of chromosome 8 and hypomethylation of LINE-1 retrotransposons are common alterations in advanced prostate carcinoma. In a former study including many metastatic cases, they strongly correlated with each other. To elucidate a possible interaction between the two alterations, we investigated their relationship in less advanced prostate cancers. RESULTS: In 50 primary tumor tissues, no correlation was observed between chromosome 8 alterations determined by comparative genomic hybridization and LINE-1 hypomethylation measured by Southern blot hybridization. The discrepancy towards the former study, which had been dominated by advanced stage cases, suggests that both alterations converge and interact during prostate cancer progression. Therefore, interaction analysis was performed on microarray-based expression profiles of cancers harboring both alterations, only one, or none. Application of a novel bioinformatic method identified Gene Ontology (GO) groups related to innate immunity, cytoskeletal organization and cell adhesion as common targets of both alterations. Many genes targeted by their interaction were involved in type I and II interferon signaling and several were functionally related to hereditary prostate cancer genes. In addition, the interaction appeared to influence a switch in the expression pattern of EPB41L genes encoding 4.1 cytoskeleton proteins. Real-time RT-PCR revealed GADD45A, MX1, EPB41L3/DAL1, and FBLN1 as generally downregulated in prostate cancer, whereas HOXB13 and EPB41L4B were upregulated. TLR3 was downregulated in a subset of the cases and associated with recurrence. Downregulation of EPB41L3, but not of GADD45A, was associated with promoter hypermethylation, which was detected in 79% of carcinoma samples. CONCLUSION: Alterations of chromosome 8 and DNA hypomethylation in prostate cancer probably do not cause each other, but converge during progression. The present analysis implicates their interaction in innate immune response suppression and cytoskeletal changes during prostate cancer progression. The study thus highlights novel mechanisms in prostate cancer progression and identifies novel candidate genes for diagnostic and therapeutic purposes. In particular, TLR3 expression might be useful for prostate cancer prognosis and EPB41L3 hypermethylation for its detection. BioMed Central 2007-02-05 /pmc/articles/PMC1797054/ /pubmed/17280610 http://dx.doi.org/10.1186/1476-4598-6-14 Text en Copyright © 2007 Schulz et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Schulz, Wolfgang A Alexa, Adrian Jung, Volker Hader, Christiane Hoffmann, Michèle J Yamanaka, Masanori Fritzsche, Sandy Wlazlinski, Agnes Müller, Mirko Lengauer, Thomas Engers, Rainer Florl, Andrea R Wullich, Bernd Rahnenführer, Jörg Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer |
title | Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer |
title_full | Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer |
title_fullStr | Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer |
title_full_unstemmed | Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer |
title_short | Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer |
title_sort | factor interaction analysis for chromosome 8 and dna methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797054/ https://www.ncbi.nlm.nih.gov/pubmed/17280610 http://dx.doi.org/10.1186/1476-4598-6-14 |
work_keys_str_mv | AT schulzwolfganga factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT alexaadrian factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT jungvolker factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT haderchristiane factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT hoffmannmichelej factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT yamanakamasanori factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT fritzschesandy factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT wlazlinskiagnes factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT mullermirko factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT lengauerthomas factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT engersrainer factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT florlandrear factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT wullichbernd factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer AT rahnenfuhrerjorg factorinteractionanalysisforchromosome8anddnamethylationalterationshighlightsinnateimmuneresponsesuppressionandcytoskeletalchangesinprostatecancer |