Cargando…

Learning Interpretable SVMs for Biological Sequence Classification

BACKGROUND: Support Vector Machines (SVMs) – using a variety of string kernels – have been successfully applied to biological sequence classification problems. While SVMs achieve high classification accuracy they lack interpretability. In many applications, it does not suffice that an algorithm just...

Descripción completa

Detalles Bibliográficos
Autores principales: Rätsch, Gunnar, Sonnenburg, Sören, Schäfer, Christin
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810320/
https://www.ncbi.nlm.nih.gov/pubmed/16723012
http://dx.doi.org/10.1186/1471-2105-7-S1-S9