Cargando…
Learning Interpretable SVMs for Biological Sequence Classification
BACKGROUND: Support Vector Machines (SVMs) – using a variety of string kernels – have been successfully applied to biological sequence classification problems. While SVMs achieve high classification accuracy they lack interpretability. In many applications, it does not suffice that an algorithm just...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810320/ https://www.ncbi.nlm.nih.gov/pubmed/16723012 http://dx.doi.org/10.1186/1471-2105-7-S1-S9 |