Cargando…
Learning Interpretable SVMs for Biological Sequence Classification
BACKGROUND: Support Vector Machines (SVMs) – using a variety of string kernels – have been successfully applied to biological sequence classification problems. While SVMs achieve high classification accuracy they lack interpretability. In many applications, it does not suffice that an algorithm just...
Autores principales: | Rätsch, Gunnar, Sonnenburg, Sören, Schäfer, Christin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810320/ https://www.ncbi.nlm.nih.gov/pubmed/16723012 http://dx.doi.org/10.1186/1471-2105-7-S1-S9 |
Ejemplares similares
-
Accurate splice site prediction using support vector machines
por: Sonnenburg, Sören, et al.
Publicado: (2007) -
GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs
por: Shrikumar, Avanti, et al.
Publicado: (2019) -
Classification of Transgenic Mice by Retinal Imaging Using SVMS
por: Sayeed, Farrukh, et al.
Publicado: (2022) -
POIMs: positional oligomer importance matrices—understanding support vector machine-based signal detectors
por: Sonnenburg, Sören, et al.
Publicado: (2008) -
NIPS workshop on New Problems and Methods in Computational Biology
por: Chechik, Gal, et al.
Publicado: (2007)