Cargando…
The Role of Cytokines which Signal through the Common γ Chain Cytokine Receptor in the Reversal of HIV Specific CD4(+) and CD8(+) T Cell Anergy
BACKGROUND: HIV specific T cells are putatively anergic in vivo. IL-2, a member of a class of cytokines that binds to receptors containing the common gamma chain (γc) has been shown to reverse anergy. We examined the role of γc cytokines in reversing HIV specific T cell anergy. METHODS: PBMC from un...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810433/ https://www.ncbi.nlm.nih.gov/pubmed/17375186 http://dx.doi.org/10.1371/journal.pone.0000300 |
Sumario: | BACKGROUND: HIV specific T cells are putatively anergic in vivo. IL-2, a member of a class of cytokines that binds to receptors containing the common gamma chain (γc) has been shown to reverse anergy. We examined the role of γc cytokines in reversing HIV specific T cell anergy. METHODS: PBMC from untreated HIV-infected individuals were briefly exposed to a panel of γc cytokines, and frequencies of gag specific T cells were enumerated by intracellular IFN-γ flow cytometry. RESULTS: Of the γc cytokines, brief exposure to IL-2, IL-15, or combined IL-15/IL-7 significantly enhanced (range 2–7 fold) the CD4(+) and CD8(+) T cell IFN-γ responses to HIV gag, with IL-15 giving the greatest enhancement. The effects of cytokines were not due to enhanced proliferation of pre-existing antigen specific cells, but were due to a combination of enhanced cytokine production from antigen specific T cells plus activation of non-epitope specific T cells. CONCLUSIONS: These observations support the notion that a significant number of HIV specific T cells are circulating in an anergic state. IL-2, IL-7 and particularly IL-15 as an immune modulator to reverse HIV-1 specific T cell anergy should be investigated, with the caveat that non-specific activation of T cells may also be induced. |
---|