Cargando…
High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol
BACKGROUND: A goal for the food industry has always been to improve strains of Lactococcus lactis and stabilize beneficial traits. Genetic engineering is used extensively for manipulating this lactic acid bacterium, while electropolation is the most widely used technique for introducing foreign DNA...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838899/ https://www.ncbi.nlm.nih.gov/pubmed/17374174 http://dx.doi.org/10.1186/1472-6750-7-15 |
_version_ | 1782132836515446784 |
---|---|
author | Papagianni, Maria Avramidis, Nicholaos Filioussis, George |
author_facet | Papagianni, Maria Avramidis, Nicholaos Filioussis, George |
author_sort | Papagianni, Maria |
collection | PubMed |
description | BACKGROUND: A goal for the food industry has always been to improve strains of Lactococcus lactis and stabilize beneficial traits. Genetic engineering is used extensively for manipulating this lactic acid bacterium, while electropolation is the most widely used technique for introducing foreign DNA into cells. The efficiency of electrotransformation depends on the level of electropermealization and pretreatment with chemicals which alter cell wall permeability, resulting in improved transformation efficiencies is rather common practice in bacteria as in yeasts and fungi. In the present study, treatment with lithium acetate (LiAc) and dithiothreitol (DTT) in various combinations was applied to L. lactis spp. lactis cells of the early-log phase prior to electroporation with plasmid pTRKH3 (a 7.8 kb shuttle vector, suitable for cloning into L. lactis). Two strains of L. lactis spp. lactis were used, L. lactis spp. lactis LM0230 and ATCC 11454. To the best of our knowledge these agents have never been used before with L. lactis or other bacteria. RESULTS: Electrotransformation efficiencies of up to 10(5 )transformants per μg DNA have been reported in the literature for L. lactis spp.lactis LM0230. We report here that treatment with LiAc and DDT before electroporation increased transformation efficiency to 225 ± 52.5 × 10(7 )transformants per μg DNA, while with untreated cells or treated with LiAc alone transformation efficiency approximated 1.2 ± 0.5 × 10(5 )transformants per μg DNA. Results of the same trend were obtained with L. lactis ATCC 11454, although transformation efficiency of this strain was significantly lower. No difference was found in the survival rate of pretreated cells after electroporation. Transformation efficiency was found to vary directly with cell density and that of 10(10 )cells/ml resulted in the highest efficiencies. Following electrotransformation of pretreated cells with LiAc and DDT, pTRKH3 stability was examined. Both host-vector systems proved to be reproducible and highly efficient. CONCLUSION: This investigation sought to improve still further transformation efficiencies and to provide a reliable high efficiency transformation system for L. lactis spp. lactis. The applied methodology, tested in two well-known strains, allows the production of large numbers of transformants and the construction of large recombinant libraries. |
format | Text |
id | pubmed-1838899 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18388992007-03-29 High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol Papagianni, Maria Avramidis, Nicholaos Filioussis, George BMC Biotechnol Methodology Article BACKGROUND: A goal for the food industry has always been to improve strains of Lactococcus lactis and stabilize beneficial traits. Genetic engineering is used extensively for manipulating this lactic acid bacterium, while electropolation is the most widely used technique for introducing foreign DNA into cells. The efficiency of electrotransformation depends on the level of electropermealization and pretreatment with chemicals which alter cell wall permeability, resulting in improved transformation efficiencies is rather common practice in bacteria as in yeasts and fungi. In the present study, treatment with lithium acetate (LiAc) and dithiothreitol (DTT) in various combinations was applied to L. lactis spp. lactis cells of the early-log phase prior to electroporation with plasmid pTRKH3 (a 7.8 kb shuttle vector, suitable for cloning into L. lactis). Two strains of L. lactis spp. lactis were used, L. lactis spp. lactis LM0230 and ATCC 11454. To the best of our knowledge these agents have never been used before with L. lactis or other bacteria. RESULTS: Electrotransformation efficiencies of up to 10(5 )transformants per μg DNA have been reported in the literature for L. lactis spp.lactis LM0230. We report here that treatment with LiAc and DDT before electroporation increased transformation efficiency to 225 ± 52.5 × 10(7 )transformants per μg DNA, while with untreated cells or treated with LiAc alone transformation efficiency approximated 1.2 ± 0.5 × 10(5 )transformants per μg DNA. Results of the same trend were obtained with L. lactis ATCC 11454, although transformation efficiency of this strain was significantly lower. No difference was found in the survival rate of pretreated cells after electroporation. Transformation efficiency was found to vary directly with cell density and that of 10(10 )cells/ml resulted in the highest efficiencies. Following electrotransformation of pretreated cells with LiAc and DDT, pTRKH3 stability was examined. Both host-vector systems proved to be reproducible and highly efficient. CONCLUSION: This investigation sought to improve still further transformation efficiencies and to provide a reliable high efficiency transformation system for L. lactis spp. lactis. The applied methodology, tested in two well-known strains, allows the production of large numbers of transformants and the construction of large recombinant libraries. BioMed Central 2007-03-21 /pmc/articles/PMC1838899/ /pubmed/17374174 http://dx.doi.org/10.1186/1472-6750-7-15 Text en Copyright © 2007 Papagianni et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Papagianni, Maria Avramidis, Nicholaos Filioussis, George High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol |
title | High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol |
title_full | High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol |
title_fullStr | High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol |
title_full_unstemmed | High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol |
title_short | High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol |
title_sort | high efficiency electrotransformation of lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838899/ https://www.ncbi.nlm.nih.gov/pubmed/17374174 http://dx.doi.org/10.1186/1472-6750-7-15 |
work_keys_str_mv | AT papagiannimaria highefficiencyelectrotransformationoflactococcuslactisspplactiscellspretreatedwithlithiumacetateanddithiothreitol AT avramidisnicholaos highefficiencyelectrotransformationoflactococcuslactisspplactiscellspretreatedwithlithiumacetateanddithiothreitol AT filioussisgeorge highefficiencyelectrotransformationoflactococcuslactisspplactiscellspretreatedwithlithiumacetateanddithiothreitol |