Cargando…
Clustering of genes into regulons using integrated modeling-COGRIM
We present a Bayesian hierarchical model and Gibbs Sampling implementation that integrates gene expression, ChIP binding, and transcription factor motif data in a principled and robust fashion. COGRIM was applied to both unicellular and mammalian organisms under different scenarios of available data...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839128/ https://www.ncbi.nlm.nih.gov/pubmed/17204163 http://dx.doi.org/10.1186/gb-2007-8-1-r4 |
_version_ | 1782132860299247616 |
---|---|
author | Chen, Guang Jensen, Shane T Stoeckert, Christian J |
author_facet | Chen, Guang Jensen, Shane T Stoeckert, Christian J |
author_sort | Chen, Guang |
collection | PubMed |
description | We present a Bayesian hierarchical model and Gibbs Sampling implementation that integrates gene expression, ChIP binding, and transcription factor motif data in a principled and robust fashion. COGRIM was applied to both unicellular and mammalian organisms under different scenarios of available data. In these applications, we demonstrate the ability to predict gene-transcription factor interactions with reduced numbers of false-positive findings and to make predictions beyond what is obtained when single types of data are considered. |
format | Text |
id | pubmed-1839128 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18391282007-04-04 Clustering of genes into regulons using integrated modeling-COGRIM Chen, Guang Jensen, Shane T Stoeckert, Christian J Genome Biol Method We present a Bayesian hierarchical model and Gibbs Sampling implementation that integrates gene expression, ChIP binding, and transcription factor motif data in a principled and robust fashion. COGRIM was applied to both unicellular and mammalian organisms under different scenarios of available data. In these applications, we demonstrate the ability to predict gene-transcription factor interactions with reduced numbers of false-positive findings and to make predictions beyond what is obtained when single types of data are considered. BioMed Central 2007 2007-01-04 /pmc/articles/PMC1839128/ /pubmed/17204163 http://dx.doi.org/10.1186/gb-2007-8-1-r4 Text en Copyright © 2007 Chen et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Method Chen, Guang Jensen, Shane T Stoeckert, Christian J Clustering of genes into regulons using integrated modeling-COGRIM |
title | Clustering of genes into regulons using integrated modeling-COGRIM |
title_full | Clustering of genes into regulons using integrated modeling-COGRIM |
title_fullStr | Clustering of genes into regulons using integrated modeling-COGRIM |
title_full_unstemmed | Clustering of genes into regulons using integrated modeling-COGRIM |
title_short | Clustering of genes into regulons using integrated modeling-COGRIM |
title_sort | clustering of genes into regulons using integrated modeling-cogrim |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839128/ https://www.ncbi.nlm.nih.gov/pubmed/17204163 http://dx.doi.org/10.1186/gb-2007-8-1-r4 |
work_keys_str_mv | AT chenguang clusteringofgenesintoregulonsusingintegratedmodelingcogrim AT jensenshanet clusteringofgenesintoregulonsusingintegratedmodelingcogrim AT stoeckertchristianj clusteringofgenesintoregulonsusingintegratedmodelingcogrim |