Cargando…

Clustering of genes into regulons using integrated modeling-COGRIM

We present a Bayesian hierarchical model and Gibbs Sampling implementation that integrates gene expression, ChIP binding, and transcription factor motif data in a principled and robust fashion. COGRIM was applied to both unicellular and mammalian organisms under different scenarios of available data...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Guang, Jensen, Shane T, Stoeckert, Christian J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839128/
https://www.ncbi.nlm.nih.gov/pubmed/17204163
http://dx.doi.org/10.1186/gb-2007-8-1-r4
_version_ 1782132860299247616
author Chen, Guang
Jensen, Shane T
Stoeckert, Christian J
author_facet Chen, Guang
Jensen, Shane T
Stoeckert, Christian J
author_sort Chen, Guang
collection PubMed
description We present a Bayesian hierarchical model and Gibbs Sampling implementation that integrates gene expression, ChIP binding, and transcription factor motif data in a principled and robust fashion. COGRIM was applied to both unicellular and mammalian organisms under different scenarios of available data. In these applications, we demonstrate the ability to predict gene-transcription factor interactions with reduced numbers of false-positive findings and to make predictions beyond what is obtained when single types of data are considered.
format Text
id pubmed-1839128
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-18391282007-04-04 Clustering of genes into regulons using integrated modeling-COGRIM Chen, Guang Jensen, Shane T Stoeckert, Christian J Genome Biol Method We present a Bayesian hierarchical model and Gibbs Sampling implementation that integrates gene expression, ChIP binding, and transcription factor motif data in a principled and robust fashion. COGRIM was applied to both unicellular and mammalian organisms under different scenarios of available data. In these applications, we demonstrate the ability to predict gene-transcription factor interactions with reduced numbers of false-positive findings and to make predictions beyond what is obtained when single types of data are considered. BioMed Central 2007 2007-01-04 /pmc/articles/PMC1839128/ /pubmed/17204163 http://dx.doi.org/10.1186/gb-2007-8-1-r4 Text en Copyright © 2007 Chen et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method
Chen, Guang
Jensen, Shane T
Stoeckert, Christian J
Clustering of genes into regulons using integrated modeling-COGRIM
title Clustering of genes into regulons using integrated modeling-COGRIM
title_full Clustering of genes into regulons using integrated modeling-COGRIM
title_fullStr Clustering of genes into regulons using integrated modeling-COGRIM
title_full_unstemmed Clustering of genes into regulons using integrated modeling-COGRIM
title_short Clustering of genes into regulons using integrated modeling-COGRIM
title_sort clustering of genes into regulons using integrated modeling-cogrim
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839128/
https://www.ncbi.nlm.nih.gov/pubmed/17204163
http://dx.doi.org/10.1186/gb-2007-8-1-r4
work_keys_str_mv AT chenguang clusteringofgenesintoregulonsusingintegratedmodelingcogrim
AT jensenshanet clusteringofgenesintoregulonsusingintegratedmodelingcogrim
AT stoeckertchristianj clusteringofgenesintoregulonsusingintegratedmodelingcogrim