Cargando…
Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites
BACKGROUND: A primary concern when targeting HIV-1 RNA by means of antisense related technologies is the accessibility of the targets. Using a library selection approach to define the most accessible sites for 20-mer oligonucleotides annealing within the highly structured 5'-UTR of the HIV-1 ge...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866241/ https://www.ncbi.nlm.nih.gov/pubmed/17459171 http://dx.doi.org/10.1186/1742-4690-4-29 |
_version_ | 1782133254218842112 |
---|---|
author | Jakobsen, Martin R Haasnoot, Joost Wengel, Jesper Berkhout, Ben Kjems, Jørgen |
author_facet | Jakobsen, Martin R Haasnoot, Joost Wengel, Jesper Berkhout, Ben Kjems, Jørgen |
author_sort | Jakobsen, Martin R |
collection | PubMed |
description | BACKGROUND: A primary concern when targeting HIV-1 RNA by means of antisense related technologies is the accessibility of the targets. Using a library selection approach to define the most accessible sites for 20-mer oligonucleotides annealing within the highly structured 5'-UTR of the HIV-1 genome we have shown that there are at least four optimal targets available. RESULTS: The biological effect of antisense DNA and LNA oligonucleotides, DNA- and LNAzymes targeted to the four most accessible sites was tested for their abilities to block reverse transcription and dimerization of the HIV-1 RNA template in vitro, and to suppress HIV-1 production in cell culture. The neutralization of HIV-1 expression declined in the following order: antisense LNA > LNAzymes > DNAzymes and antisense DNA. The LNA modifications strongly enhanced the in vivo inhibitory activity of all the antisense constructs and some of the DNAzymes. Notably, two of the LNA modified antisense oligonucleotides inhibited HIV-1 production in cell culture very efficiently at concentration as low as 4 nM. CONCLUSION: LNAs targeted to experimentally selected binding sites can function as very potent inhibitors of HIV-1 expression in cell culture and may potentially be developed as antiviral drug in patients. |
format | Text |
id | pubmed-1866241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18662412007-05-09 Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites Jakobsen, Martin R Haasnoot, Joost Wengel, Jesper Berkhout, Ben Kjems, Jørgen Retrovirology Research BACKGROUND: A primary concern when targeting HIV-1 RNA by means of antisense related technologies is the accessibility of the targets. Using a library selection approach to define the most accessible sites for 20-mer oligonucleotides annealing within the highly structured 5'-UTR of the HIV-1 genome we have shown that there are at least four optimal targets available. RESULTS: The biological effect of antisense DNA and LNA oligonucleotides, DNA- and LNAzymes targeted to the four most accessible sites was tested for their abilities to block reverse transcription and dimerization of the HIV-1 RNA template in vitro, and to suppress HIV-1 production in cell culture. The neutralization of HIV-1 expression declined in the following order: antisense LNA > LNAzymes > DNAzymes and antisense DNA. The LNA modifications strongly enhanced the in vivo inhibitory activity of all the antisense constructs and some of the DNAzymes. Notably, two of the LNA modified antisense oligonucleotides inhibited HIV-1 production in cell culture very efficiently at concentration as low as 4 nM. CONCLUSION: LNAs targeted to experimentally selected binding sites can function as very potent inhibitors of HIV-1 expression in cell culture and may potentially be developed as antiviral drug in patients. BioMed Central 2007-04-26 /pmc/articles/PMC1866241/ /pubmed/17459171 http://dx.doi.org/10.1186/1742-4690-4-29 Text en Copyright © 2007 Jakobsen et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Jakobsen, Martin R Haasnoot, Joost Wengel, Jesper Berkhout, Ben Kjems, Jørgen Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites |
title | Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites |
title_full | Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites |
title_fullStr | Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites |
title_full_unstemmed | Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites |
title_short | Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites |
title_sort | efficient inhibition of hiv-1 expression by lna modified antisense oligonucleotides and dnazymes targeted to functionally selected binding sites |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866241/ https://www.ncbi.nlm.nih.gov/pubmed/17459171 http://dx.doi.org/10.1186/1742-4690-4-29 |
work_keys_str_mv | AT jakobsenmartinr efficientinhibitionofhiv1expressionbylnamodifiedantisenseoligonucleotidesanddnazymestargetedtofunctionallyselectedbindingsites AT haasnootjoost efficientinhibitionofhiv1expressionbylnamodifiedantisenseoligonucleotidesanddnazymestargetedtofunctionallyselectedbindingsites AT wengeljesper efficientinhibitionofhiv1expressionbylnamodifiedantisenseoligonucleotidesanddnazymestargetedtofunctionallyselectedbindingsites AT berkhoutben efficientinhibitionofhiv1expressionbylnamodifiedantisenseoligonucleotidesanddnazymestargetedtofunctionallyselectedbindingsites AT kjemsjørgen efficientinhibitionofhiv1expressionbylnamodifiedantisenseoligonucleotidesanddnazymestargetedtofunctionallyselectedbindingsites |