Cargando…
Fine-mapping using the weighted average method for a case-control study
We present a new method for fine-mapping a disease susceptibility locus using a case-control design. The new method, termed the weighted average (WA) statistic, averages the Cochran-Armitage (CA) trend test statistic and the difference between the Hardy-Weinberg disequilibrium test statistic for cas...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866715/ https://www.ncbi.nlm.nih.gov/pubmed/16451680 http://dx.doi.org/10.1186/1471-2156-6-S1-S67 |
Sumario: | We present a new method for fine-mapping a disease susceptibility locus using a case-control design. The new method, termed the weighted average (WA) statistic, averages the Cochran-Armitage (CA) trend test statistic and the difference between the Hardy-Weinberg disequilibrium test statistic for cases and controls (the HWD trend). The main characteristics of the WA statistic are that it improves on the weaknesses, and maintains the strengths, of both the CA trend test and the HWD trend test. Data from three different populations in the Genetic Analysis Workshop 14 (GAW14) simulated dataset (Aipotu, Karangar, and Danacaa) were first subjected to model-free linkage analysis to find regions exhibiting linkage. Then, for fine-scale mapping, 140 SNPs within the significant linkage regions were analyzed with the WA test statistic on replicates of the three populations, both separately and combined. The regions that were significant in the multipoint linkage analysis were also significant in this fine-scale mapping. The most significant regions that were obtained using the WA statistic were regions in chromosome 3 (B03T3056–B03T3058, p-value < 1 × 10(-10 )) and chromosome 9 (B09T8332–B09T8334, p-value 1 × 10(-6 )). Based on the results of the simulated GAW14 data, the WA test statistic showed good performance and could narrow down the region containing the susceptibility locus. However, the strength of the signal depends on both the strength of the linkage disequilibrium and the heterozygosity of the linked marker. |
---|