Cargando…

Effect of genotyping error in model-free linkage analysis using microsatellite or single-nucleotide polymorphism marker maps

Errors while genotyping are inevitable and can reduce the power to detect linkage. However, does genotyping error have the same impact on linkage results for single-nucleotide polymorphism (SNP) and microsatellite (MS) marker maps? To evaluate this question we detected genotyping errors that are con...

Descripción completa

Detalles Bibliográficos
Autores principales: Thompson, Cheryl L, Baechle, Dan, Lu, Qing, Mathew, George, Song, Yeunjoo, Iyengar, Sudha K, Gray-McGuire, Courtney, Goddard, Katrina AB
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866781/
https://www.ncbi.nlm.nih.gov/pubmed/16451614
http://dx.doi.org/10.1186/1471-2156-6-S1-S153
Descripción
Sumario:Errors while genotyping are inevitable and can reduce the power to detect linkage. However, does genotyping error have the same impact on linkage results for single-nucleotide polymorphism (SNP) and microsatellite (MS) marker maps? To evaluate this question we detected genotyping errors that are consistent with Mendelian inheritance using large changes in multipoint identity-by-descent sharing in neighboring markers. Only a small fraction of Mendelian consistent errors were detectable (e.g., 18% of MS and 2.4% of SNP genotyping errors). More SNP genotyping errors are Mendelian consistent compared to MS genotyping errors, so genotyping error may have a greater impact on linkage results using SNP marker maps. We also evaluated the effect of genotyping error on the power and type I error rate using simulated nuclear families with missing parents under 0, 0.14, and 2.8% genotyping error rates. In the presence of genotyping error, we found that the power to detect a true linkage signal was greater for SNP (75%) than MS (67%) marker maps, although there were also slightly more false-positive signals using SNP marker maps (5 compared with 3 for MS). Finally, we evaluated the usefulness of accounting for genotyping error in the SNP data using a likelihood-based approach, which restores some of the power that is lost when genotyping error is introduced.