Cargando…
Arthritis suppression by NADPH activation operates through an interferon-β pathway
BACKGROUND: A polymorphism in the activating component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, neutrophil cytosolic factor 1 (NCF1), has previously been identified as a regulator of arthritis severity in mice and rats. This discovery resulted in a search for NADPH...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1884140/ https://www.ncbi.nlm.nih.gov/pubmed/17490473 http://dx.doi.org/10.1186/1741-7007-5-19 |
Sumario: | BACKGROUND: A polymorphism in the activating component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, neutrophil cytosolic factor 1 (NCF1), has previously been identified as a regulator of arthritis severity in mice and rats. This discovery resulted in a search for NADPH oxidase-activating substances as a potential new approach to treat autoimmune disorders such as rheumatoid arthritis (RA). We have recently shown that compounds inducing NCF1-dependent oxidative burst, e.g. phytol, have a strong ameliorating effect on arthritis in rats. However, the underlying molecular mechanism is still not clearly understood. The aim of this study was to use gene-expression profiling to understand the protective effect against arthritis of activation of NADPH oxidase in the immune system. RESULTS: Subcutaneous administration of phytol leads to an accumulation of the compound in the inguinal lymph nodes, with peak levels being reached approximately 10 days after administration. Hence, global gene-expression profiling on inguinal lymph nodes was performed 10 days after the induction of pristane-induced arthritis (PIA) and phytol administration. The differentially expressed genes could be divided into two pathways, consisting of genes regulated by different interferons. IFN-γ regulated the pathway associated with arthritis development, whereas IFN-β regulated the pathway associated with disease protection through phytol. Importantly, these two molecular pathways were also confirmed to differentiate between the arthritis-susceptible dark agouti (DA) rat, (with an Ncf-1(DA )allele that allows only low oxidative burst), and the arthritis-protected DA.Ncf-1(E3 )rat (with an Ncf1(E3 )allele that allows a stronger oxidative burst). CONCLUSION: Naturally occurring genetic polymorphisms in the Ncf-1 gene modulate the activity of the NADPH oxidase complex, which strongly regulates the severity of arthritis. We now show that the Ncf-1 allele that enhances oxidative burst and protects against arthritis is operating through an IFN-β-associated pathway, whereas the arthritis-driving allele operates through an IFN-γ-associated pathway. Treatment of arthritis-susceptible rats with an NADPH oxidase-activating substance, phytol, protects against arthritis. Interestingly, the treatment led to a restoration of the oxidative-burst effect and induction of a strikingly similar IFN-β-dependent pathway, as seen with the disease-protective Ncf1 polymorphism. |
---|